Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm

The parameters of support vector machines (SVMs) such as kernel parameters and the penalty parameter have a great influence on the accuracy and complexity of the classification models. In the past, different evolutionary optimization algorithms were employed for optimizing SVMs; in this paper, we propose a social ski-driver (SSD) optimization algorithm which is inspired from different evolutionary optimization algorithms for optimizing the parameters of SVMs, with the aim of improving the classification performance. To cope with the problem of imbalanced data which is one of the challenging problems for building robust classification models, the proposed algorithm (SSD-SVM) was enhanced to deal with imbalanced data. In this study, eight standard imbalanced datasets were used for testing our proposed algorithm. For verification, the results of the SSD-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, and particle swarm optimization (PSO). The experimental results show that the SSD-SVM algorithm is capable of finding near-optimal values of SVMs parameters. The results also demonstrated high classification performance compared to the PSO algorithm.

[1]  Aboul Ella Hassanien,et al.  Chaotic antlion algorithm for parameter optimization of support vector machine , 2018, Applied Intelligence.

[2]  James Blondin,et al.  Particle Swarm Optimization: A Tutorial , 2009 .

[3]  Peter Willett,et al.  What is a tutorial , 2013 .

[4]  Aboul Ella Hassanien,et al.  Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines , 2017, J. Biomed. Informatics.

[5]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[6]  Doreen Eichel,et al.  Learning And Soft Computing Support Vector Machines Neural Networks And Fuzzy Logic Models , 2016 .

[7]  Yang Wang,et al.  Cost-sensitive boosting for classification of imbalanced data , 2007, Pattern Recognit..

[8]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[9]  Seetha Hari,et al.  Learning From Imbalanced Data , 2019, Advances in Computer and Electrical Engineering.

[10]  Andrew K. C. Wong,et al.  Classification of Imbalanced Data: a Review , 2009, Int. J. Pattern Recognit. Artif. Intell..

[11]  Xiaoli Zhang,et al.  An ACO-based algorithm for parameter optimization of support vector machines , 2010, Expert Syst. Appl..

[12]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[13]  Tieniu Tan,et al.  Combining Fingerprint and Voiceprint Biometrics for Identity Verification: an Experimental Comparison , 2004, ICBA.

[14]  Massimiliano Pontil,et al.  Support Vector Machines: Theory and Applications , 2001, Machine Learning and Its Applications.

[15]  Aboul Ella Hassanien,et al.  A BA-based algorithm for parameter optimization of Support Vector Machine , 2017, Pattern Recognit. Lett..

[16]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[17]  Aboul Ella Hassanien,et al.  Parameter Optimization of Support Vector Machine Using Dragonfly Algorithm , 2017, AISI.

[18]  Aboul Ella Hassanien,et al.  A New Multi-layer Perceptrons Trainer Based on Ant Lion Optimization Algorithm , 2015, 2015 Fourth International Conference on Information Science and Industrial Applications (ISI).

[19]  A. Massi Pavan,et al.  A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant , 2013 .

[20]  Christian Igel,et al.  Evolutionary tuning of multiple SVM parameters , 2005, ESANN.

[21]  Alaa Tharwat,et al.  Classification assessment methods , 2020, Applied Computing and Informatics.

[22]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[23]  Abdulhamit Subasi,et al.  Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders , 2013, Comput. Biol. Medicine.

[24]  Chih-Hung Wu,et al.  A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression , 2009, Expert Syst. Appl..

[25]  Alfonso Rojas-Domínguez,et al.  Optimal Hyper-Parameter Tuning of SVM Classifiers With Application to Medical Diagnosis , 2018, IEEE Access.

[26]  Shih-Wei Lin,et al.  Particle swarm optimization for parameter determination and feature selection of support vector machines , 2008, Expert Syst. Appl..

[27]  Alaa Tharwat,et al.  Parameter investigation of support vector machine classifier with kernel functions , 2019, Knowledge and Information Systems.

[28]  Kristin P. Bennett,et al.  Model selection for primal SVM , 2011, Machine Learning.

[29]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[30]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[31]  Yunqiang Zhang,et al.  Machine training and parameter settings with social emotional optimization algorithm for support vector machine , 2015, Pattern Recognit. Lett..

[32]  Steven M. LaValle,et al.  On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[33]  Mehmet Karaköse,et al.  A multi-objective artificial immune algorithm for parameter optimization in support vector machine , 2011, Appl. Soft Comput..