Sunlight-thin nanophotonic monocrystalline silicon solar cells

Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro- to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.

[1]  Emmanuel Drouard,et al.  Pseudo-disordered structures for light trapping improvement in mono-crystalline Si thin-films , 2017 .

[2]  T. Bearda,et al.  Integrating surface nanotextures into thin crystalline-Si solar cells: The case of a 1μm-thin nanoimprinted heterojunction cell , 2017, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC).

[3]  P. Cabarrocas,et al.  Influence of anodic bonding on the surface passivation quality of crystalline silicon , 2016 .

[4]  E. Drouard,et al.  Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping. , 2016, Nano letters.

[5]  Eddy Simoen,et al.  Photonic nanostructures for advanced light trapping in silicon solar cells: the impact of etching on the material electronic quality , 2016 .

[6]  R. Mertens,et al.  Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells. , 2016, Optics express.

[7]  Hele Savin,et al.  Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. , 2015, Nature nanotechnology.

[8]  O. El Daif,et al.  Influence of Periodic Surface Nanopatterning Profiles on Series Resistance in Thin-Film Crystalline Silicon Heterojunction Solar Cells , 2015, IEEE Journal of Photovoltaics.

[9]  Alexandre Mayer,et al.  A fair comparison between ultrathin crystalline-silicon solar cells with either periodic or correlated disorder inverted pyramid textures. , 2015, Optics express.

[10]  L. Andreani,et al.  Photonic light trapping and electrical transport in thin-film silicon solar cells , 2015 .

[11]  D. Wiersma,et al.  Complex Photonic Structures for Light Harvesting , 2015, Advanced optical materials.

[12]  James Loomis,et al.  15.7% Efficient 10‐μm‐Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures , 2015, Advanced materials.

[13]  James Loomis,et al.  Efficient 10m-Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures , 2015 .

[14]  Lucio Claudio Andreani,et al.  Broadband light trapping with disordered photonic structures in thin‐film silicon solar cells , 2014 .

[15]  M. Peters,et al.  Simulation of Periodic Nanostructures for Light Management in Thin Crystalline Silicon Solar Cells , 2014 .

[16]  M. Kondo,et al.  11.0%-Efficient Thin-Film Microcrystalline Silicon Solar Cells With Honeycomb Textured Substrates , 2014, IEEE Journal of Photovoltaics.

[17]  A. Ayón,et al.  Ultrathin, flexible, hybrid solar cells in sub-ten micrometers single crystal silicon membrane , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[18]  Robert Mertens,et al.  Plasma–silicone interaction during a-Si:H deposition on solar cell wafers bonded to glass , 2014 .

[19]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[20]  Angelo Bozzola,et al.  How to assess light trapping structures versus a Lambertian Scatterer for solar cells? , 2014, Optics express.

[21]  E. Drouard,et al.  Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals , 2013, IEEE Journal of Photovoltaics.

[22]  D. N. Wright,et al.  Qualification of encapsulation materials for module-level-processing , 2014 .

[23]  Yi Cui,et al.  All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency , 2013, Nature Communications.

[24]  John A. Rogers,et al.  Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells , 2013 .

[25]  Shanhui Fan,et al.  Large-area free-standing ultrathin single-crystal silicon as processable materials. , 2013, Nano letters.

[26]  D. Wiersma,et al.  Photon management in two-dimensional disordered media , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[27]  K. Catchpole,et al.  Nanophotonic light trapping in solar cells , 2012 .

[28]  O. Deparis,et al.  Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells , 2012, 1208.2822.

[29]  T. Krauss,et al.  Engineering gratings for light trapping in photovoltaics: The supercell concept , 2012 .

[30]  Emmanuel Drouard,et al.  Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells. , 2012, Optics express.

[31]  Thomas Käsebier,et al.  Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition , 2012 .

[32]  Lucio Claudio Andreani,et al.  Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns. , 2012, Optics express.

[33]  S. Noda,et al.  Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics , 2012, 1203.0363.

[34]  J. Poortmans,et al.  Epitaxy‐free monocrystalline silicon thin film: first steps beyond proof‐of‐concept solar cells , 2011 .

[35]  E. Simoen,et al.  DLTS of p-type Czochralski Si wafers containing processing-induced macropores , 2011 .

[36]  Amit Lal,et al.  High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. , 2010, Nano letters.

[37]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[38]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[39]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[40]  Ichiro Mizushima,et al.  Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure , 2000 .

[41]  Ronald A. Sinton,et al.  A quasi-steady-state open-circuit voltage method for solar cell characterization , 2000 .

[42]  M. Green,et al.  Optical properties of intrinsic silicon at 300 K , 1995 .

[43]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[44]  Ping Sheng,et al.  Wavelength-selective absorption enhancement in thin-film solar cells , 1983 .

[45]  E. Yablonovitch Statistical ray optics , 1982 .