Chapter 4 – THE ORDER-THEORETIC APPROACH TO SCHEDULING: THE STOCHASTIC CASE

This paper continues the overview of the order-theoretic approach to scheduling dealt with in Part I of this volume with a discussion of stochastic scheduling models.

[1]  George B. Kleindorfer,et al.  Bounding Distributions for a Stochastic Acyclic Network , 1971, Oper. Res..

[2]  F. J. Radermacher Invarianzaussagen für stochastische Netzpläne , 1976 .

[3]  H. J. Cleef,et al.  Project scheduling via stochastic programming 1 , 1982 .

[4]  Bajis M. Dodin,et al.  Bounding the Project Completion Time Distribution in PERT Networks , 1985, Oper. Res..

[5]  Stephen S. Lavenberg,et al.  A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations , 1981 .

[6]  D. R. Fulkerson A Network Flow Computation for Project Cost Curves , 1961 .

[7]  Rolf H. Möhring,et al.  Introduction to Stochastic Scheduling Problems , 1985 .

[8]  Hisashi Kobayashi,et al.  Modeling and analysis , 1978 .

[9]  Gideon Weiss,et al.  Stochastic bounds on distributions of optimal value functions with applications to pert, network flows and reliability , 1984, Oper. Res..

[10]  Gideon Weiss,et al.  Stochastic scheduling problems II-set strategies- , 1985, Z. Oper. Research.

[11]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[12]  F. Radermacher,et al.  Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .

[13]  R. Kaerkes,et al.  Ergebnisse der Theorie der Netzpläne mit stochastisch verteilten Vorgangsdauern , 1976 .

[14]  Franz Josef Radermacher,et al.  Algorithmic approaches to preselective strategies for stochastic scheduling problems , 1983, Networks.

[15]  Wolfgang Gaul,et al.  On Stochastic Analysis of Project-Networks , 1982 .

[16]  James J. Solberg,et al.  The use of cutsets in Monte Carlo analysis of stochastic networks , 1979 .

[17]  Jack C. Hayya,et al.  Technical Note—A Comparison of the Method of Bounding Distributions (MBD) and Monte Carlo Simulation for Analyzing Stochastic Acyclic Networks , 1980 .

[18]  Jane N. Hagstrom,et al.  Computational complexity of PERT problems , 1988, Networks.

[19]  Richard M. Van Slyke,et al.  Letter to the Editor---Monte Carlo Methods and the PERT Problem , 1963 .

[20]  M. Dessouky,et al.  The Cut Search Algorithm with Arc Capacities and Lower Bounds , 1979 .

[21]  S. Elmaghraby Chapter 1 – THE ESTIMATION OF SOME NETWORK PARAMETERS IN THE PERT MODEL OF ACTIVITY NETWORKS: REVIEW AND CRITIQUE , 1989 .

[22]  John M. Burt,et al.  Conditional Monte Carlo: A Simulation Technique for Stochastic Network Analysis , 1971 .

[23]  J. Scott Provan,et al.  The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..

[24]  D. R. Fulkerson,et al.  Anti-blocking polyhedra , 1972 .

[25]  Franz Josef Radermacher,et al.  Preselective strategies for the optimization of stochastic project networks under resource constraints , 1983, Networks.

[26]  Isaac Meilijson,et al.  Convex majorization with an application to the length of critical paths , 1979, Journal of Applied Probability.

[27]  D. R. Fulkerson Expected Critical Path Lengths in PERT Networks , 1962 .

[28]  Michael Pinedo,et al.  Scheduling tasks with exponential service times on non-identical processors to minimize various cost functions , 1980, Journal of Applied Probability.

[29]  S. Elmaghraby On the Expected Duration of PERT Type Networks , 1967 .

[30]  D. Walkup,et al.  Association of Random Variables, with Applications , 1967 .

[31]  Sheldon M. Ross,et al.  International conference, stochastic dynamic optimization and applications in scheduling and related areas : Universität Passau, April 21.- April 27. 1985 , 1985 .

[32]  C. T. Clingen Letter to the Editor-A Modification of Fulkerson's PERT Algorithm , 1964 .

[33]  Van Slyke,et al.  MONTE CARLO METHODS AND THE PERT PROBLEM , 1963 .

[34]  F. J. Radermacher,et al.  Chapter 2 – THE ORDER-THEORETIC APPROACH TO SCHEDULING: THE DETERMINISTIC CASE , 1989 .

[35]  Gideon Weiss,et al.  Stochastic scheduling problems I — General strategies , 1984, Z. Oper. Research.

[36]  Pierre N. Robillard,et al.  Technical Note - Expected Completion Time in Pert Networks , 1976, Oper. Res..

[37]  Luc Devroye,et al.  Inequalities for the Completion Times of Stochastic PERT Networks , 1979, Math. Oper. Res..

[38]  Thomas Kämpke On the optimality of static priority policies in stochastic scheduling on parallel machines , 1987 .

[39]  W. K. Haneveld Robustness against dependence in PERT: An application of duality and distributions with known marginals , 1986 .

[40]  R. Duffin Topology of series-parallel networks , 1965 .

[41]  Andrew W. Shogan Bounding distributions for a stochastic pert network , 1977, Networks.

[42]  G. Thompson,et al.  Critical Path Analyses Via Chance Constrained and Stochastic Programming , 1964 .