Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity

We consider a (possibly) nonlinear interface problem in 2D and 3D, which is solved by use of various adaptive FEM-BEM coupling strategies, namely the Johnson–Nédélec coupling, the Bielak–MacCamy coupling, and Costabel’s symmetric coupling. We provide a framework to prove that the continuous as well as the discrete Galerkin solutions of these coupling methods additionally solve an appropriate operator equation with a Lipschitz continuous and strongly monotone operator. Therefore, the original coupling formulations are well-defined, and the Galerkin solutions are quasi-optimal in the sense of a Céa-type lemma. For the respective Galerkin discretizations with lowest-order polynomials, we provide reliable residual-based error estimators. Together with an estimator reduction property, we prove convergence of the adaptive FEM-BEM coupling methods. A key point for the proof of the estimator reduction are novel inverse-type estimates for the involved boundary integral operators which are advertized. Numerical experiments conclude the work and compare performance and effectivity of the three adaptive coupling procedures in the presence of generic singularities.

[1]  W. Hackbusch,et al.  Finite elements on degenerate meshes: inverse-type inequalities and applications , 2005 .

[2]  P. Lenz,et al.  ANTARES – A Numerical Tool for Astrophysical RESearch with applications to solar granulation , 2009, 0905.0177.

[3]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[4]  Colin B. Macdonald,et al.  On the Linear Stability of the Fifth-Order WENO Discretization , 2011, J. Sci. Comput..

[5]  Michael Karkulik,et al.  Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..

[6]  Othmar Koch,et al.  SDIRK Methods for the ANTARES Code , 2010 .

[7]  Inmaculada Higueras,et al.  Total-variation-diminishing implicit-explicit Runge-Kutta methods for the simulation of double-diffusive convection in astrophysics , 2011, J. Comput. Phys..

[8]  Jacobo Bielak,et al.  An exterior interface problem in two-dimensional elastodynamics , 1983 .

[9]  Michael Karkulik,et al.  HILBERT — a MATLAB implementation of adaptive 2D-BEM , 2014, Numerical Algorithms.

[10]  Michael Feischl,et al.  Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems , 2012 .

[11]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[12]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[13]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[14]  G. Akrivis A First Course In The Numerical Analysis Of Differential Equations [Book News & Reviews] , 1998, IEEE Computational Science and Engineering.

[15]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[16]  M. N. Spijker Stepsize Conditions for General Monotonicity in Numerical Initial Value Problems , 2007, SIAM J. Numer. Anal..

[17]  Martin Costabel,et al.  Symmetric Methods for the Coupling of Finite Elements and Boundary Elements (Invited contribution) , 1987 .

[18]  F. Brezzi,et al.  On the coupling of boundary integral and finite element methods , 1979 .

[19]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[20]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[21]  Inmaculada Higueras,et al.  Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..

[22]  Colin B. Macdonald,et al.  Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .

[23]  Michael Karkulik,et al.  Energy norm based error estimators for adaptive BEM for hypersingular integral equations , 2015 .

[24]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[25]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[26]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[27]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[28]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[29]  Dirk Praetorius,et al.  Estimator reduction and convergence of adaptive BEM , 2012, Applied numerical mathematics : transactions of IMACS.

[30]  S Sauter,et al.  Boundary elements methods. Analysis, numerics and implementation of fast algorithms. (Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen.) , 2004 .

[31]  M. N. Spijker,et al.  Strong stability of singly-diagonally-implicit Runge--Kutta methods , 2008 .

[32]  Rong Wang,et al.  Linear Instability of the Fifth-Order WENO Method , 2007, SIAM J. Numer. Anal..

[33]  Carsten Carstensen,et al.  On the adaptive coupling of FEM and BEM in 2–d–elasticity , 1997 .

[34]  Ernst P. Stephan,et al.  A posteriori error estimates for fem–bem couplings of three-dimensional electromagnetic problems , 2005 .

[35]  Francisco-Javier Sayas,et al.  The Validity of Johnson-Nédélec's BEM-FEM Coupling on Polygonal Interfaces , 2009, SIAM Rev..

[36]  Michael Karkulik,et al.  Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM , 2012, 1211.4360.

[37]  Inmaculada Higueras,et al.  Characterizing Strong Stability Preserving Additive Runge-Kutta Methods , 2009, J. Sci. Comput..

[38]  M. N. Spijker Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems , 1985 .

[39]  M. N. Spijker,et al.  An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..

[40]  Olaf Steinbach,et al.  A Note on the Stable One-Equation Coupling of Finite and Boundary Elements , 2011, SIAM J. Numer. Anal..

[41]  SEBASTIANO BOSCARINO Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..

[42]  Inmaculada Higueras,et al.  Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..

[43]  Carsten Carstensen,et al.  Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .

[44]  J. Kraaijevanger Contractivity of Runge-Kutta methods , 1991 .

[45]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[46]  Karline Soetaert,et al.  Solving Ordinary Differential Equations in R , 2012 .

[47]  Francisco-Javier Sayas,et al.  Relaxing the hypotheses of Bielak–MacCamy’s BEM–FEM coupling , 2012, Numerische Mathematik.

[48]  Martin Costabel,et al.  Coupling of finite and boundary element methods for an elastoplastic interface problem , 1990 .

[49]  D. Praetorius,et al.  A posteriori error estimates for the Johnson–Nédélec FEM–BEM coupling , 2012, Engineering analysis with boundary elements.

[50]  Carsten Carstensen,et al.  Adaptive coupling of boundary elements and finite elements , 1995 .

[51]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[52]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[53]  J. Kraaijevanger,et al.  Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems , 1986 .

[54]  Martin Costabel,et al.  Experimental convergence rates for various couplings of boundary and finite elements , 1991 .

[55]  Roland Glowinski,et al.  Energy methods in finite element analysis , 1980 .

[56]  J. Kraaijevanger,et al.  Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems , 1986 .

[57]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[58]  M. Calvo,et al.  Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .

[59]  Carsten Carstensen,et al.  A posteriori error estimate for the symmetric coupling of finite elements and boundary elements , 1996, Computing.

[60]  Gabriel N. Gatica,et al.  Boundary-Field Equation Methods for a Class of Nonlinear Problems , 1995 .

[61]  Ernst P. Stephan,et al.  Adaptive FE–BE coupling for an electromagnetic problem in ℝ3—A residual error estimator , 2010 .

[62]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[63]  Inmaculada Higueras,et al.  On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..

[64]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[65]  M. N. Spijker Contractivity in the numerical solution of initial value problems , 1983 .

[66]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[67]  Willem Hundsdorfer,et al.  Boundedness and strong stability of Runge-Kutta methods , 2011, Math. Comput..

[68]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[69]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[70]  J. Craggs Applied Mathematical Sciences , 1973 .