Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity
暂无分享,去创建一个
Michael Karkulik | Jens Markus Melenk | Michael Feischl | Dirk Praetorius | Markus Aurada | Thomas Führer | J. Melenk | T. Führer | M. Aurada | M. Karkulik | D. Praetorius | M. Feischl
[1] W. Hackbusch,et al. Finite elements on degenerate meshes: inverse-type inequalities and applications , 2005 .
[2] P. Lenz,et al. ANTARES – A Numerical Tool for Astrophysical RESearch with applications to solar granulation , 2009, 0905.0177.
[3] G. Russo,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .
[4] Colin B. Macdonald,et al. On the Linear Stability of the Fifth-Order WENO Discretization , 2011, J. Sci. Comput..
[5] Michael Karkulik,et al. Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..
[6] Othmar Koch,et al. SDIRK Methods for the ANTARES Code , 2010 .
[7] Inmaculada Higueras,et al. Total-variation-diminishing implicit-explicit Runge-Kutta methods for the simulation of double-diffusive convection in astrophysics , 2011, J. Comput. Phys..
[8] Jacobo Bielak,et al. An exterior interface problem in two-dimensional elastodynamics , 1983 .
[9] Michael Karkulik,et al. HILBERT — a MATLAB implementation of adaptive 2D-BEM , 2014, Numerical Algorithms.
[10] Michael Feischl,et al. Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems , 2012 .
[11] Olaf Steinbach,et al. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .
[12] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[13] Wolfgang L. Wendland,et al. Boundary integral equations , 2008 .
[14] G. Akrivis. A First Course In The Numerical Analysis Of Differential Equations [Book News & Reviews] , 1998, IEEE Computational Science and Engineering.
[15] Chi-Wang Shu,et al. High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..
[16] M. N. Spijker. Stepsize Conditions for General Monotonicity in Numerical Initial Value Problems , 2007, SIAM J. Numer. Anal..
[17] Martin Costabel,et al. Symmetric Methods for the Coupling of Finite Elements and Boundary Elements (Invited contribution) , 1987 .
[18] F. Brezzi,et al. On the coupling of boundary integral and finite element methods , 1979 .
[19] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[20] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[21] Inmaculada Higueras,et al. Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..
[22] Colin B. Macdonald,et al. Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .
[23] Michael Karkulik,et al. Energy norm based error estimators for adaptive BEM for hypersingular integral equations , 2015 .
[24] David I. Ketcheson,et al. Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..
[25] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[26] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations , 1989 .
[27] C. Schwab,et al. Boundary Element Methods , 2010 .
[28] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[29] Dirk Praetorius,et al. Estimator reduction and convergence of adaptive BEM , 2012, Applied numerical mathematics : transactions of IMACS.
[30] S Sauter,et al. Boundary elements methods. Analysis, numerics and implementation of fast algorithms. (Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen.) , 2004 .
[31] M. N. Spijker,et al. Strong stability of singly-diagonally-implicit Runge--Kutta methods , 2008 .
[32] Rong Wang,et al. Linear Instability of the Fifth-Order WENO Method , 2007, SIAM J. Numer. Anal..
[33] Carsten Carstensen,et al. On the adaptive coupling of FEM and BEM in 2–d–elasticity , 1997 .
[34] Ernst P. Stephan,et al. A posteriori error estimates for fem–bem couplings of three-dimensional electromagnetic problems , 2005 .
[35] Francisco-Javier Sayas,et al. The Validity of Johnson-Nédélec's BEM-FEM Coupling on Polygonal Interfaces , 2009, SIAM Rev..
[36] Michael Karkulik,et al. Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM , 2012, 1211.4360.
[37] Inmaculada Higueras,et al. Characterizing Strong Stability Preserving Additive Runge-Kutta Methods , 2009, J. Sci. Comput..
[38] M. N. Spijker. Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems , 1985 .
[39] M. N. Spijker,et al. An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..
[40] Olaf Steinbach,et al. A Note on the Stable One-Equation Coupling of Finite and Boundary Elements , 2011, SIAM J. Numer. Anal..
[41] SEBASTIANO BOSCARINO. Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..
[42] Inmaculada Higueras,et al. Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..
[43] Carsten Carstensen,et al. Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .
[44] J. Kraaijevanger. Contractivity of Runge-Kutta methods , 1991 .
[45] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[46] Karline Soetaert,et al. Solving Ordinary Differential Equations in R , 2012 .
[47] Francisco-Javier Sayas,et al. Relaxing the hypotheses of Bielak–MacCamy’s BEM–FEM coupling , 2012, Numerische Mathematik.
[48] Martin Costabel,et al. Coupling of finite and boundary element methods for an elastoplastic interface problem , 1990 .
[49] D. Praetorius,et al. A posteriori error estimates for the Johnson–Nédélec FEM–BEM coupling , 2012, Engineering analysis with boundary elements.
[50] Carsten Carstensen,et al. Adaptive coupling of boundary elements and finite elements , 1995 .
[51] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[52] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[53] J. Kraaijevanger,et al. Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems , 1986 .
[54] Martin Costabel,et al. Experimental convergence rates for various couplings of boundary and finite elements , 1991 .
[55] Roland Glowinski,et al. Energy methods in finite element analysis , 1980 .
[56] J. Kraaijevanger,et al. Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems , 1986 .
[57] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[58] M. Calvo,et al. Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .
[59] Carsten Carstensen,et al. A posteriori error estimate for the symmetric coupling of finite elements and boundary elements , 1996, Computing.
[60] Gabriel N. Gatica,et al. Boundary-Field Equation Methods for a Class of Nonlinear Problems , 1995 .
[61] Ernst P. Stephan,et al. Adaptive FE–BE coupling for an electromagnetic problem in ℝ3—A residual error estimator , 2010 .
[62] E. Zeidler. Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .
[63] Inmaculada Higueras,et al. On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..
[64] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[65] M. N. Spijker. Contractivity in the numerical solution of initial value problems , 1983 .
[66] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[67] Willem Hundsdorfer,et al. Boundedness and strong stability of Runge-Kutta methods , 2011, Math. Comput..
[68] G. Russo,et al. Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .
[69] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[70] J. Craggs. Applied Mathematical Sciences , 1973 .