Modeling excessive nutrient loading in the environment.

Models addressing excessive nutrient loading in the environment originated over 50 years ago with the simple nutrient concentration thresholds proposed by Sawyer (1947. Fertilization of lakes by agricultural and urban drainage. New Engl. Water Works Assoc. 61, 109-127). Since then, models have improved due to progress in modeling techniques and technology as well as enhancements in scientific knowledge. Several of these advances are examined here. Among the recent approaches in modeling techniques we review are error propagation, model confirmation, generalized sensitivity analysis, and Bayesian analysis. In the scientific arena and process characterization, we focus on advances in surface water modeling, discussing enhanced modeling of organic carbon, improved hydrodynamics, and refined characterization of sediment diagenesis. We conclude with some observations on future needs and anticipated developments.

[1]  Kenneth H. Reckhow,et al.  A note on error analysis for a phosphorus retention model , 1979 .

[2]  Gary L. Amy,et al.  Trihalomethane Precursor Model for Lake Youngs, Washington , 1997 .

[3]  Dennis V. Lindley,et al.  Empirical Bayes Methods , 1974 .

[4]  Kenneth H. Reckhow,et al.  Bayesian inference in non-replicated ecological studies , 1990 .

[5]  E. Laws,et al.  A microalgal growth model , 1990 .

[6]  R. Kadlec An autobiotic wetland phosphorus model , 1997 .

[7]  G. Hornberger Eutrophication in peel inlet—I. The problem-defining behavior and a mathematical model for the phosphorus scenario , 1980 .

[8]  EMPIRICAL BAYES ESTIMATION AND INFERENCE FOR THE PHOSPHORUS–CHLOROPHYLL RELATIONSHIP IN LAKES , 1986 .

[9]  Carl F. Cerco,et al.  Three‐Dimensional Eutrophication Model of Chesapeake Bay , 1993 .

[10]  R. Cooke Experts in Uncertainty: Opinion and Subjective Probability in Science , 1991 .

[11]  Donald J. O'Connor,et al.  11 – Phytoplankton–Zooplankton–Nutrient Interaction Model for Western Lake Erie , 1975 .

[12]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[13]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[14]  James J. Fitzpatrick,et al.  Chesapeake Bay Sediment Flux Model , 1993 .

[15]  G. van Straten,et al.  Uncertainty in the Parameters and Predictions of Phytoplankton Models , 1979 .

[16]  B. C. Patten,et al.  Systems Analysis and Simulation in Ecology , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  T. Auer,et al.  Phosphorus diagenesis in lake sediments: investigations using fractionation techniques , 1995 .

[18]  Raymond P. Canale,et al.  Variance estimates for a dynamic eutrophication model of Saginaw Bay, Lake Huron , 1981 .

[19]  R. P. Canale,et al.  A Biological Production Model for Grand Traverse Bay , 1974 .

[20]  Raymond P. Canale,et al.  LONG-TERM PHENOMENOLOGICAL MODEL OF PHOSPHORUS AND OXYGEN FOR STRATIFIED LAKES , 1991 .

[21]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[22]  Sven Erik Jørgensen,et al.  Structural dynamic model , 1986 .

[23]  James L. Martin,et al.  THE WATER QUALITY ANALYSIS SIMULATION PROGRAM, WASP5 PART A: MODEL DOCUMENTATION , 1993 .

[24]  James J. Fitzpatrick,et al.  Water Quality Analysis Simulation Program (WASP) , 1900 .

[25]  M. Scheffer,et al.  Alternative equilibria in shallow lakes. , 1993, Trends in ecology & evolution.

[26]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[27]  D. D. Toro,et al.  Optics of turbid estuarine waters: Approximations and applications , 1978 .

[28]  Kenneth H. Reckhow,et al.  Water quality simulation modeling and uncertainty analysis for risk assessment and decision making , 1994 .

[29]  J. Clausen,et al.  TESTS OF THE CREAMS MODEL ON AGRICULTURAL FIELDS IN VERMONT , 1988 .

[30]  Kenneth H. Reckhow,et al.  Engineering Approaches for Lake Management, Volume 1: Data Analysis and Empirical Modeling , 1982 .

[31]  Jane M. Booker,et al.  Eliciting and analyzing expert judgement - a practical guide , 2001, ASA-SIAM series on statistics and applied probability.

[32]  R. P. Canale,et al.  Ecological Studies and Mathematical Modeling of Cladophora in Lake Huron: 5. Model Development and Calibration , 1982 .

[33]  H. Bowen,et al.  Radionuclides in Ecosystems. , 1975 .

[34]  W. Edwards,et al.  Decision Analysis and Behavioral Research , 1986 .

[35]  Peter G. Challenor,et al.  A Markov chain Monte Carlo method for estimation and assimilation into models , 1997 .

[36]  Kenneth H. Reckhow,et al.  Uncertainty Analysis Applied to Vollenweider Phosphorus Loading Criterion , 1979 .

[37]  K. Green,et al.  Estimating nutrient loadings of lakes from non-point sources , 1974 .

[38]  J. Steele,et al.  FURTHER RELATIONS BETWEEN PRIMARY PRODUCTION, CHLOROPHYLL, AND PARTICULATE CARBON , 1962 .

[39]  Dominic M. DiToro,et al.  Sediment Oxygen Demand Model: Methane and Ammonia Oxidation , 1990 .

[40]  J. Steele,et al.  RELATIONS BETWEEN PRIMARY PRODUCTION, CHLOROPHYLL AND PARTICULATE CARBON , 1961 .

[41]  J. Connolly,et al.  Model of Carbon Cycling in Planktonic Food Webs , 1995 .

[42]  John H. Steele,et al.  ENVIRONMENTAL CONTROL OF PHOTOSYNTHESIS IN THE SEA , 1962 .

[43]  Craig A. Stow,et al.  A Bayesian observation error model to predict cyanobacterial biovolume from spring total phosphorus in Lake Mendota, Wisconsin , 1997 .

[44]  R. Thomann,et al.  Principles of surface water quality modeling and control , 1987 .

[45]  Gerald T. Orlob,et al.  12 – Ecologic Simulation for Aquatic Environments , 1975 .

[46]  S. Chapra Surface Water-Quality Modeling , 1996 .

[47]  Robert V. O'Neill,et al.  Analysis of parameter error in a nonlinear model , 1980 .