A general-purpose tunable landscape generator

The research literature on metaheuristic and evolutionary computation has proposed a large number of algorithms for the solution of challenging real-world optimization problems. It is often not possible to study theoretically the performance of these algorithms unless significant assumptions are made on either the algorithm itself or the problems to which it is applied, or both. As a consequence, metaheuristics are typically evaluated empirically using a set of test problems. Unfortunately, relatively little attention has been given to the development of methodologies and tools for the large-scale empirical evaluation and/or comparison of metaheuristics. In this paper, we propose a landscape (test-problem) generator that can be used to generate optimization problem instances for continuous, bound-constrained optimization problems. The landscape generator is parameterized by a small number of parameters, and the values of these parameters have a direct and intuitive interpretation in terms of the geometric features of the landscapes that they produce. An experimental space is defined over algorithms and problems, via a tuple of parameters for any specified algorithm and problem class (here determined by the landscape generator). An experiment is then clearly specified as a point in this space, in a way that is analogous to other areas of experimental algorithmics, and more generally in experimental design. Experimental results are presented, demonstrating the use of the landscape generator. In particular, we analyze some simple, continuous estimation of distribution algorithms, and gain new insights into the behavior of these algorithms using the landscape generator

[1]  Kenneth Dean Boese,et al.  Models for iterative global optimization , 1996 .

[2]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[3]  Stephen G. Nash,et al.  Guidelines for reporting results of computational experiments. Report of the ad hoc committee , 1991, Math. Program..

[4]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[5]  Thomas Bartz-Beielstein,et al.  Experimental Analysis of Evolution Strategies - Overview and Comprehensive Introduction , 2003 .

[6]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[7]  Toby Walsh,et al.  How Not To Do It , 1995 .

[8]  Qingfu Zhang,et al.  On the convergence of a class of estimation of distribution algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[9]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[10]  Alastair Smith,et al.  How not to do it , 2005 .

[11]  Catherine C. McGeoch Feature Article - Toward an Experimental Method for Algorithm Simulation , 1996, INFORMS J. Comput..

[12]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[13]  Raymond R. Hill An analytical comparison of optimization problem generation methodologies , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[14]  P. Siarry,et al.  Enhanced Continuous Tabu Search: An Algorithm for Optimizing Multiminima Functions , 1999 .

[15]  G. Unter Rudolph On Correlated Mutations in Evolution Strategies , 1992 .

[16]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[17]  Matthew J. Saltzman,et al.  Statistical Analysis of Computational Tests of Algorithms and Heuristics , 2000, INFORMS J. Comput..

[18]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[19]  Ronald L. Rardin,et al.  Analysis of a Random Cut Test Instance Generator for the TSP , 2004 .

[20]  Bruce E. Stuckman,et al.  A global search method for optimizing nonlinear systems , 1988, IEEE Trans. Syst. Man Cybern..

[21]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[22]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[23]  J. M. Mulvey,et al.  A Critical Review of Comparisons of Mathematical Programming Algorithms and Software (1953-1977). , 1978, Journal of research of the National Bureau of Standards.

[24]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[25]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[26]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[27]  Marcus Gallagher,et al.  On building a principled framework for evaluating and testing evolutionary algorithms: a continuous landscape generator , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[28]  Marcus Gallagher,et al.  Playing in continuous spaces: some analysis and extension of population-based incremental learning , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[29]  A. E. Eiben,et al.  A critical note on experimental research methodology in EC , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[30]  Marcus Gallagher,et al.  Statistical Racing Techniques for Improved Empirical Evaluation of Evolutionary Algorithms , 2004, PPSN.

[31]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[32]  Miguel Á. Carreira-Perpiñán,et al.  On the Number of Modes of a Gaussian Mixture , 2003, Scale-Space.

[33]  Edwin R. Hancock,et al.  Empirical Modelling of Genetic Algorithms , 2001, Evolutionary Computation.

[34]  Hitoshi Iba,et al.  Real-Coded Estimation of Distribution Algorithm , 2003 .

[35]  J. Kennedy,et al.  Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[36]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[37]  L. Darrell Whitley,et al.  Building Better Test Functions , 1995, ICGA.

[38]  Xin Yao,et al.  From an individual to a population: an analysis of the first hitting time of population-based evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[39]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[40]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[41]  Marcus Gallagher,et al.  Fitness Distance Correlation of Neural Network Error Surfaces: A Scalable, Continuous Optimization Problem , 2001, ECML.

[42]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[43]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[44]  David S. Johnson,et al.  A theoretician's guide to the experimental analysis of algorithms , 1999, Data Structures, Near Neighbor Searches, and Methodology.

[45]  Zbigniew Michalewicz,et al.  Test-case generator for nonlinear continuous parameter optimization techniques , 2000, IEEE Trans. Evol. Comput..

[46]  Günter Rudolph,et al.  On Correlated Mutations in Evolution Strategies , 1992, PPSN.

[47]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[48]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[49]  Olivier François,et al.  Design of evolutionary algorithms-A statistical perspective , 2001, IEEE Trans. Evol. Comput..

[50]  Catherine C. McGeoch Experimental analysis of algorithms , 1986 .

[51]  C. R. Reeves,et al.  Landscapes, operators and heuristic search , 1999, Ann. Oper. Res..

[52]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[53]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[54]  Marc Toussaint,et al.  On Classes of Functions for which No Free Lunch Results Hold , 2001, Inf. Process. Lett..

[55]  Reha Uzsoy,et al.  Experimental Evaluation of Heuristic Optimization Algorithms: A Tutorial , 2001, J. Heuristics.

[56]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[57]  Kenneth A. De Jong,et al.  Using Problem Generators to Explore the Effects of Epistasis , 1997, ICGA.

[58]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[59]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).