Dissolved reactive manganese at pelagic redoxclines (part II): Hydrodynamic conditions for accumulation

Abstract Dissolved reactive Mn (dMn react ) has been determined at the redoxclines of two anoxic deeps from the Baltic Sea (Landsort Deep and Gotland Basin) and two seasonally anoxic freshwater lakes (Lake Dagow and Fuchskuhle, Germany). This dMn react fraction is rapidly oxidised under oxygen atmosphere and is assumed to consist predominantly of Mn(III). There is a distinct increase of dMn react from the outer regions towards the central part of the Landsort Deep. Although the presence of MnO x particles in the Gotland Basin is evidence of ongoing oxidation of reduced Mn species, almost no dMn react was detected. Since completely different processes of Mn oxidation appear rather unlikely, we suggest oceanographic properties are responsible. Lateral currents and intrusions in the Gotland Basin seem to prevent the formation of a stable suboxic zone, a prerequisite necessary for accumulation of dMn react . Such perturbations supply trace amounts of O 2 and H 2 S, causing either immediate oxidation/reduction of dMn react or deterioration of its stabilising ligands. dMn react has also been determined in Lake Dagow with values significantly exceeding the level of the Landsort Deep due to stable stratification of this lake. In contrast, H 2 S appearance throughout the entire water column and a pH react in Lake Fuchskuhle.

[1]  C. Pohl,et al.  The effect of redox processes on the partitioning of Cd, Pb, Cu, and Mn between dissolved and particulate phases in the Baltic Sea , 1999 .

[2]  Falk Pollehne,et al.  Manganese cycling in the Gotland Deep, Baltic Sea , 2003 .

[3]  Bernhard Schnetger,et al.  Dissolved reactive manganese at pelagic redoxclines (part I): A method for determination based on field experiments , 2012 .

[4]  Falk Pollehne,et al.  Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea , 2005 .

[5]  Karen J. Murray,et al.  Documenting the suboxic zone of the Black Sea via high-resolution real-time redox profiling , 2006 .

[6]  G. Luther Manganese(II) Oxidation and Mn(IV) Reduction in the Environment—Two One-Electron Transfer Steps Versus a Single Two-Electron Step , 2005 .

[7]  F. Millero,et al.  The products from the oxidation of H2S in seawater , 1993 .

[8]  Bernhard Schnetger,et al.  A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins , 2010 .

[9]  D. Nehring,et al.  The Baltic Sea 1994—Consequences of the hot summer and inflow events , 1995 .

[10]  Karen J. Murray,et al.  Lateral injection of oxygen with the Bosporus plume—fingers of oxidizing potential in the Black Sea , 2003 .

[11]  F. Jakobsen The major inflow to the Baltic Sea during January 1993 , 1995 .

[12]  G. Sposito,et al.  Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium , 2004 .

[13]  W. Dean,et al.  Organic‐matter production and preservation and evolution of anoxia in the Holocene Black Sea , 1998 .

[14]  E. Yakushev,et al.  Dissolved and particulate forms of iron and manganese in the redox zone of the Black Sea , 2009 .

[15]  F. Muller‐Karger,et al.  Controls on temporal variability of the geochemistry of the deep Cariaco Basin , 2001 .

[16]  J. Sellschopp,et al.  Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models , 2006 .

[17]  K. Nealson,et al.  CHEMICAL AND BIOLOGICAL REDUCTION OF MN (III)-PYROPHOSPHATE COMPLEXES : POTENTIAL IMPORTANCE OF DISSOLVED MN (III) AS AN ENVIRONMENTAL OXIDANT , 1995 .

[18]  A. Voipio The Baltic Sea , 1994, The Law of Maritime Boundary Delimitation.

[19]  H. Grossart,et al.  Changes in Pelagic Bacteria Communities Due to Leaf Litter Addition , 2010, Microbial Ecology.

[20]  B. Tebo,et al.  Manganese ii oxidation in the suboxic zone of the black sea , 1991 .

[21]  B. Jørgensen,et al.  Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark) , 2001 .

[22]  S. Casper Lake Stechlin : a temperate oligotrophic lake , 1985 .

[23]  B. Schneider,et al.  Carbon fluxes across the halocline in the eastern Gotland Sea , 2000 .

[24]  H. Brumsack The trace metal content of recent organic carbon-rich sediments; implications for Cretaceous black shale formation , 2006 .

[25]  J. Murray,et al.  Vertical Hydrochemical Structure of the Black Sea , 2007 .

[26]  William E. Johns,et al.  Product water mass formation by turbulent density currents from a high-order nonhydrostatic spectral element model , 2006 .

[27]  D. Conley,et al.  Past Occurrences of Hypoxia in the Baltic Sea , 2008 .

[28]  H. Grossart,et al.  Diversity and Seasonal Dynamics of Actinobacteria Populations in Four Lakes in Northeastern Germany , 2006, Applied and Environmental Microbiology.

[29]  James K. McCarthy,et al.  Inter-relationships of MnO2 precipitation, siderophore–Mn(III) complex formation, siderophore degradation, and iron limitation in Mn(II)-oxidizing bacterial cultures , 2007 .

[30]  B. Jørgensen,et al.  Sulfide oxidation in the anoxic Black Sea chemocline , 1991 .

[31]  Fj Jochem,et al.  Phototrophic and heterotrophic pico- and nanoplankton in anoxic depths of the central Baltic Sea , 1993 .

[32]  M. Labrenz,et al.  Distribution of abundant prokaryotic organisms in the water column of the central Baltic Sea with an oxic-anoxic interface , 2007 .

[33]  G. Sposito,et al.  Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(ll) promoted by desferrioxamine B. , 2005, Environmental science & technology.

[34]  B. Tebo,et al.  Microbial manganese(II) oxidation in the marine environment: a quantitative study , 1986 .

[35]  I. Fridovich,et al.  Characterization of Mn(III) complexes of linear and cyclic desferrioxamines as mimics of superoxide dismutase activity. , 1994, Archives of biochemistry and biophysics.

[36]  B. Schneider,et al.  Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model , 2007 .

[37]  William Davison,et al.  Iron and manganese in lakes , 1993 .

[38]  S. G. Heintze,et al.  Soluble complexes of manganic manganese , 1947, The Journal of Agricultural Science.

[39]  K. Nagel,et al.  Hydrographisch-chemische Zustandseinschätzung der Ostsee 2004 , 2003 .

[40]  Karen J. Murray,et al.  Biogenic manganese oxides: Properties and mechanisms of formation , 2004 .

[41]  N. Kuzmina,et al.  Structure and driving mechanisms of Baltic intrusions , 2003 .

[42]  Jens Skei,et al.  Importance of the different manganese species in the formation of water column redox zones: Observations and modeling , 2009 .

[43]  W. Keeney-Kennicutt,et al.  Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin , 1984 .

[44]  Rainer Feistel,et al.  Temporal and spatial evolution of the Baltic deep water renewal in spring 2003 , 2003 .

[45]  B. Tebo,et al.  Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone , 2009 .

[46]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[47]  W. Matthäus,et al.  On the causes of major Baltic inflows —an analysis of long time series , 1998 .

[48]  G. Friederich,et al.  Oxidation-Reduction Environments: The Suboxic Zone in the Black Sea , 1995 .

[49]  L. Sigg,et al.  Vertical transport of heavy metals by settling particles in Lake Zurich , 1987 .

[50]  J. J. Morgan,et al.  Kinetic Behavior of Mn(III) Complexes of Pyrophosphate, EDTA, and Citrate , 1998 .

[51]  J. Ingri,et al.  Chemistry of suspended particles in the southern Baltic Sea , 1991 .

[52]  W. Matthäus,et al.  Characteristics of major Baltic inflows—a statistical analysis , 1992 .

[53]  Lorenz Magaard,et al.  Meereskunde der Ostsee , 1974 .

[54]  Joel D. Cline,et al.  SPECTROPHOTOMETRIC DETERMINATION OF HYDROGEN SULFIDE IN NATURAL WATERS1 , 1969 .

[55]  M. Zubkov,et al.  High abundance and dark CO2 fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea , 2008 .

[56]  B. Tebo,et al.  Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  T. Takamatsu,et al.  Mechanisms of precipitation of manganese(II) in Lake Biwa, a fresh water lake , 1988 .

[58]  T. Leipe,et al.  Automatisierte Partikelanalyse von Gewässerproben mittels Raster-Elektronenmikroskopie und Röntgen-Mikroanalytik , 1999 .

[59]  B. Tebo,et al.  Soluble Mn(III) in Suboxic Zones , 2006, Science.

[60]  T. Oguz,et al.  Parameterization of iron and manganese cycling in the Black Sea suboxic and anoxic environment , 2004 .

[61]  V. Paka,et al.  What drives thermohaline intrusions in the Baltic Sea , 1999 .

[62]  G. Friederich,et al.  Unexpected changes in the oxic/anoxic interface in the Black Sea , 1989, Nature.

[63]  D. Nehring,et al.  The Baltic Sea in 1995— Beginning of a new stagnation period in its central deep waters and decreasing nutrient load in its surface layer , 1995 .

[64]  M. Scranton,et al.  Controls on iron, manganese and intermediate oxidation state sulfur compounds in the Cariaco Basin , 2008 .