Super-Resolution of Positive Sources: The Discrete Setup

In single-molecule microscopy it is necessary to locate with high precision point sources from noisy observations of the spectrum of the signal at frequencies capped by $f_c$, which is just about the frequency of natural light. This paper rigorously establishes that this super-resolution problem can be solved via linear programming in a stable manner. We prove that the quality of the reconstruction crucially depends on the Rayleigh regularity of the support of the signal; that is, on the maximum number of sources that can occur within a square of side length about $1/f_c$. The theoretical performance guarantee is complemented with a converse result showing that our simple convex program convex is nearly optimal. Finally, numerical experiments illustrate our methods.

[1]  Torsten Söderström,et al.  Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies , 1991, IEEE Trans. Signal Process..

[2]  Laurent Demanet,et al.  The recoverability limit for superresolution via sparsity , 2015, ArXiv.

[3]  Peyman Milanfar,et al.  On the resolvability of sinusoids with nearby frequencies in the presence of noise , 2005, IEEE Transactions on Signal Processing.

[4]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[5]  Carlos Fernandez-Granda Support detection in super-resolution , 2013, ArXiv.

[6]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Dmitry Batenkov,et al.  On the Accuracy of Solving Confluent Prony Systems , 2011, SIAM J. Appl. Math..

[8]  T. Kailath,et al.  A subspace rotation approach to signal parameter estimation , 1986, Proceedings of the IEEE.

[9]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[10]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[11]  Peyman Milanfar,et al.  Imaging below the diffraction limit: a statistical analysis , 2004, IEEE Transactions on Image Processing.

[12]  Carlos Fernandez-Granda,et al.  Super-resolution of point sources via convex programming , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[13]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[14]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[15]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[16]  J. Goodman Introduction to Fourier optics , 1969 .

[17]  Petre Stoica,et al.  Statistical analysis of two nonlinear least-squares estimators of sine-wave parameters in the colored-noise case , 1989 .

[18]  Alan V. Oppenheim,et al.  Signals & systems (2nd ed.) , 1996 .

[19]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[20]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[21]  Georges Bienvenu Influence of the spatial coherence of the background noise on high resolution passive methods , 1979, ICASSP.

[22]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[23]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[24]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[25]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[26]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[27]  P. Stoica,et al.  A computationally efficient implementation of 2-D IQML , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[28]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of multidimensional harmonic retrieval , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[29]  Carl W. Helstrom,et al.  The detection and resolution of optical signals , 1964, IEEE Trans. Inf. Theory.

[30]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[31]  A. Ouamri,et al.  Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds , 1989, IEEE Trans. Acoust. Speech Signal Process..

[32]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[33]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[34]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[35]  Badri Narayan Bhaskar,et al.  Compressed Sensing o the Grid , 2013 .

[36]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[37]  Guanghui Lan,et al.  Primal-dual first-order methods with O (1/e) iteration-complexity for cone programming. , 2011 .

[38]  D. Donoho Superresolution via sparsity constraints , 1992 .

[39]  Louis L. Scharf,et al.  Two-dimensional modal analysis based on maximum likelihood , 1994, IEEE Trans. Signal Process..

[40]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[41]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[42]  Jean-Jacques Fuchs,et al.  Sparsity and uniqueness for some specific under-determined linear systems , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[43]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.