Low Cost Text Mining as a Strategy for Qualitative Researchers

Advances in text mining together with the widespread adoption of the Internethave opened up new possibilities for qualitative researchersin the information systems and business and management field ...

[1]  S. van Buuren,et al.  Multiple Imputation of Multilevel Data , 2006 .

[2]  M. Kenward,et al.  Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls , 2009, BMJ : British Medical Journal.

[3]  A. Zaslavsky,et al.  Multiple imputation in a large-scale complex survey: a practical guide , 2010, Statistical methods in medical research.

[4]  S. Chevret,et al.  Multiple imputation: a mature approach to dealing with missing data , 2015, Intensive Care Medicine.

[5]  Wayne A. Fuller,et al.  On the bias of the multiple‐imputation variance estimator in survey sampling , 2006 .

[6]  Douglas G Altman,et al.  Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study , 2010, BMC medical research methodology.

[7]  P. Roth MISSING DATA: A CONCEPTUAL REVIEW FOR APPLIED PSYCHOLOGISTS , 1994 .

[8]  Geert Verbeke,et al.  Analysis of incomplete data , 2005 .

[9]  Craig K. Enders,et al.  A Comparison of Item-Level and Scale-Level Multiple Imputation for Questionnaire Batteries , 2012 .

[10]  J. Schafer Multiple Imputation in Multivariate Problems When the Imputation and Analysis Models Differ , 2003 .

[11]  J. Carpenter,et al.  Practice of Epidemiology Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study , 2014 .

[12]  Jerome P. Reiter,et al.  Multiple imputation for missing data via sequential regression trees. , 2010, American journal of epidemiology.

[13]  Donald B. Rubin,et al.  Inference from Coarse Data via Multiple Imputation with Application to Age Heaping , 1990 .

[14]  Peter Bühlmann,et al.  MissForest - non-parametric missing value imputation for mixed-type data , 2011, Bioinform..

[15]  Ofer Harel,et al.  The estimation of R 2 and adjusted R 2 in incomplete data sets using multiple imputation , 2009 .

[16]  John B Carlin,et al.  Recovery of information from multiple imputation: a simulation study , 2012, Emerging Themes in Epidemiology.

[17]  T. Stijnen,et al.  Review: a gentle introduction to imputation of missing values. , 2006, Journal of clinical epidemiology.

[18]  Michael G Kenward,et al.  Multiple imputation: current perspectives , 2007, Statistical methods in medical research.

[19]  Patrick Royston,et al.  Multiple imputation using chained equations: Issues and guidance for practice , 2011, Statistics in medicine.

[20]  Recai M. Yucel,et al.  Performance of Sequential Imputation Method in Multilevel Applications , 2009 .

[21]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[22]  Geert Molenberghs,et al.  Analyzing Incomplete Discrete Longitudinal Clinical Trial Data , 2006, math/0606497.

[23]  A Rogier T Donders,et al.  Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example. , 2010, Journal of clinical epidemiology.

[24]  D. Rubin Multiple Imputation After 18+ Years , 1996 .

[25]  J. Graham,et al.  Missing data analysis: making it work in the real world. , 2009, Annual review of psychology.

[26]  Craig K Enders,et al.  Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation. , 2016, Psychological methods.

[27]  Ken P Kleinman,et al.  Much Ado About Nothing , 2007, The American statistician.

[28]  D. Rubin,et al.  Multiple Imputation for Interval Estimation from Simple Random Samples with Ignorable Nonresponse , 1986 .

[29]  S Greenland,et al.  A critical look at methods for handling missing covariates in epidemiologic regression analyses. , 1995, American journal of epidemiology.

[30]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data , 1988 .

[31]  J. Schafer,et al.  On the performance of multiple imputation for multivariate data with small sample size , 1999 .

[32]  Ian R White,et al.  Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods , 2012, BMC Medical Research Methodology.

[33]  Donald B. Rubin,et al.  Performing likelihood ratio tests with multiply-imputed data sets , 1992 .

[34]  Paul T. von Hippel,et al.  HOW TO IMPUTE INTERACTIONS, SQUARES, AND OTHER TRANSFORMED VARIABLES , 2009 .

[35]  Qi Long,et al.  Multiple imputation in the presence of high-dimensional data , 2016, Statistical methods in medical research.

[36]  Sijian Wang,et al.  Variable Selection for Multiply-imputed Data with Application to Dioxin Exposure Study Variable Selection for Multiply-imputed Data , 2011 .

[37]  Elizabeth A Stuart,et al.  Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative. , 2009, American journal of epidemiology.

[38]  Katherine J. Lee,et al.  The rise of multiple imputation: a review of the reporting and implementation of the method in medical research , 2015, BMC Medical Research Methodology.

[39]  Joseph G. Ibrahim,et al.  Missing data methods in longitudinal studies: a review , 2009 .

[40]  Alexander Robitzsch,et al.  Multiple imputation of missing covariate values in multilevel models with random slopes: a cautionary note , 2015, Behavior Research Methods.

[41]  Michael Schomaker,et al.  Model selection and model averaging after multiple imputation , 2014, Comput. Stat. Data Anal..

[42]  Craig K Enders,et al.  Estimating interaction effects with incomplete predictor variables. , 2014, Psychological methods.

[43]  T. Raghunathan,et al.  Multiple Imputation of Missing Income Data in the National Health Interview Survey , 2006 .

[44]  Patrick Royston,et al.  How should variable selection be performed with multiply imputed data? , 2008, Statistics in medicine.

[45]  Roderick J. A. Little,et al.  Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .

[46]  D. Rubin,et al.  Multiple Imputation for Nonresponse in Surveys , 1989 .

[47]  J. Graham,et al.  How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory , 2007, Prevention Science.

[48]  Stef van Buuren,et al.  MICE: Multivariate Imputation by Chained Equations in R , 2011 .

[49]  J. Schafer,et al.  A comparison of inclusive and restrictive strategies in modern missing data procedures. , 2001, Psychological methods.

[50]  Jeremy MG Taylor,et al.  Partially parametric techniques for multiple imputation , 1996 .

[51]  Qingxia Chen,et al.  Missing covariate data in medical research: to impute is better than to ignore. , 2010, Journal of clinical epidemiology.

[52]  J. Schafer Multiple imputation: a primer , 1999, Statistical methods in medical research.

[53]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[54]  G. King,et al.  Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation , 2001, American Political Science Review.

[55]  Patrick Royston,et al.  Tuning multiple imputation by predictive mean matching and local residual draws , 2014, BMC Medical Research Methodology.