Algorithmic Folding Complexity

How do we most quickly fold a paper strip (modeled as a line) to obtain a desired mountain-valley pattern of equidistant creases (viewed as a binary string)? Define the folding complexity of a mountain-valley string as the minimum number of simple folds required to construct it. We show that the folding complexity of a length-n uniform string (all mountains or all valleys), and hence of a length-n pleat (alternating mountain/valley), is polylogarithmic in n. We also show that the maximum possible folding complexity of any string of length n is $O(n/\lg n)$, meeting a previously known lower bound.