Copula and semicopula transforms

We characterize the transformation, defined for every copula C, by Ch(x,y):=h[−1](C(h(x),h(y))), where x and y belong to [0,1] and h is a strictly increasing and continuous function on [0,1]. We study this transformation also in the class of quasi-copulas and semicopulas.

[1]  Radko Mesiar,et al.  Transformations of Copulas and Quasi-Copulas , 2004 .

[2]  Bo Henry Lindqvist,et al.  Mathematical and statistical methods in reliability , 2003 .

[3]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[4]  F. Spizzichino Subjective Probability Models for Lifetimes , 2001 .

[5]  Radu Theodorescu,et al.  Extreme value attractors for star unimodal copulas , 2002 .

[6]  Claudi Alsina,et al.  On the characterization of a class of binary operations on distribution functions , 1993 .

[7]  F. García,et al.  Two families of fuzzy integrals , 1986 .

[8]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[9]  Bernard De Baets,et al.  Bell-type inequalities for quasi-copulas , 2004, Fuzzy Sets Syst..

[10]  José Juan Quesada-Molina,et al.  Derivability of some operations on distribution functions , 1996 .

[11]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[12]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[13]  D. Denneberg Non-additive measure and integral , 1994 .

[14]  Christian Genest,et al.  On the multivariate probability integral transformation , 2001 .

[15]  Richard E. Barlow,et al.  Schur-concave survival functions and survival analysis , 1993 .

[16]  Christian Genest,et al.  A Characterization of Quasi-copulas , 1999 .

[17]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[18]  Shaun S. Wang,et al.  Axiomatic characterization of insurance prices , 1997 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Fabio Spizzichino,et al.  Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes , 2005 .

[21]  I. Olkin,et al.  Domains of Attraction of Multivariate Extreme Value Distributions , 1983 .

[22]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[23]  Carlo Sempi COPULÆ AND THEIR USES , 2003 .

[24]  Carles M. Cuadras,et al.  Distributions With Given Marginals and Statistical Modelling , 2002 .

[25]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[26]  Rinya Takahashi,et al.  Domains of Attraction of Multivariate Extreme Value Distributions , 1994, Journal of research of the National Institute of Standards and Technology.

[27]  Przemysław Grzegorzewski,et al.  Soft Methodology and Random Information Systems , 2004 .