Nonisothermal Transient Flow in Natural Gas Pipeline

The fully implicit finite-difference method is used to solve the continuity, momentum, and energy equations for flow within a gas pipeline. This methodology (1) incorporates the convective inertia term in the conservation of momentum equation, (2) treats the compressibility factor as a function of temperature and pressure, and (3) considers the friction factor as a function of the Reynolds number and pipe roughness. The fully implicit method representation of the equations offers the advantage of guaranteed stability for a large time step, which is very useful for gas pipeline industry. The results show that the effect of treating the gas in a nonisothermal manner is extremely necessary for pipeline flow calculation accuracies, especially for rapid transient process. It also indicates that the convective inertia term plays an important role in the gas flow analysis and cannot be neglected from the calculation.