Data assimilation of mean velocity from 2D PIV measurements of flow over an idealized airfoil

Data assimilation can be used to combine experimental and numerical realizations of the same flow to produce hybrid flow fields. These have the advantages of less noise contamination and higher resolution while simultaneously reproducing the main physical features of the measured flow. This study investigates data assimilation of the mean flow around an idealized airfoil (Re = 13,500) obtained from time-averaged two-dimensional particle image velocimetry (PIV) data. The experimental data, which constitute a low-dimensional representation of the full flow field due to resolution and field-of-view limitations, are incorporated into a simulation governed by the two-dimensional, incompressible Reynolds-averaged Navier–Stokes (RANS) equations with an unknown momentum forcing. This forcing, which corresponds to the divergence of the Reynolds stress tensor, is calculated from a direct-adjoint optimization procedure to match the experimental and numerical mean velocity fields. The simulation is projected onto the low-dimensional subspace of the experiment to calculate the discrepancy and a smoothing procedure is used to recover adjoint solutions on the higher dimensional subspace of the simulation. The study quantifies how well data assimilation can reconstruct the mean flow and the minimum experimental measurements needed by altering the resolution and domain size of the time-averaged PIV.

[1]  Peter J. Schmid,et al.  A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction , 2014, Journal of Fluid Mechanics.

[2]  Li Wei,et al.  医用ハイパースペクトル画像における血液細胞分類を行う平列計算 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2016 .

[3]  O. Marquet,et al.  Sensitivity analysis and passive control of cylinder flow , 2008, Journal of Fluid Mechanics.

[4]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[5]  A. Prasad,et al.  The instability of the shear layer separating from a bluff body , 1997, Journal of Fluid Mechanics.

[6]  B. Wieneke PIV uncertainty quantification from correlation statistics , 2015 .

[7]  Jovicic Gordana,et al.  Dy:YAG及びDy:Er:YAG粒子を加える乱流高温ガス流における燐光体温度測定 , 2015 .

[8]  J. Wesfreid,et al.  STRONGLY NONLINEAR EFFECT IN UNSTABLE WAKES , 1997 .

[9]  B. Protas,et al.  On Optimal Reconstruction of Constitutive Relations , 2011 .

[10]  Jens Flemming,et al.  Generalized Tikhonov regularization , 2011 .

[11]  Toshiyuki Hayase,et al.  Fundamental Study of Hybrid Wind Tunnel Integrating Numerical Simulation and Experiment in Analysis of Flow Field , 2004 .

[12]  Thomas Bewley,et al.  A Linear Systems Approach to Flow Control , 2007 .

[13]  Shelly L. Miller,et al.  Particle Image Velocimetry of Human Cough , 2011 .

[14]  P. Luchini,et al.  Structural sensitivity of the first instability of the cylinder wake , 2007, Journal of Fluid Mechanics.

[15]  K. Sreenivasan,et al.  On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers , 1990, Journal of Fluid Mechanics.

[16]  Takao Suzuki,et al.  Unsteady PTV velocity field past an airfoil solved with DNS: Part 1. Algorithm of hybrid simulation and hybrid velocity field at Re ≈ 103 , 2009 .

[17]  Takao Suzuki Reduced-order Kalman-filtered hybrid simulation combining particle tracking velocimetry and direct numerical simulation , 2012, Journal of Fluid Mechanics.

[18]  Philippe Meliga,et al.  Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability , 2012 .

[19]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[20]  Étienne Mémin,et al.  Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation , 2011, J. Comput. Phys..

[21]  L. Lourenço Particle Image Velocimetry , 1989 .

[22]  Denis Sipp,et al.  Quasi-laminar stability and sensitivity analyses for turbulent flows: Prediction of low-frequency unsteadiness and passive control , 2014 .

[23]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[24]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[25]  B. Wieneke,et al.  PIV uncertainty propagation , 2016 .

[26]  P. Meliga,et al.  Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach , 2010 .

[27]  Pierre Sagaut,et al.  Reconstruction of unsteady viscous flows using data assimilation schemes , 2016, J. Comput. Phys..

[28]  Jürgen Kompenhans,et al.  Particle Image Velocimetry - A Practical Guide (2nd Edition) , 2007 .

[29]  Barton L. Smith,et al.  Uncertainty on PIV mean and fluctuating velocity due to bias and random errors , 2013 .

[30]  J. Westerweel,et al.  Universal outlier detection for PIV data , 2005 .

[31]  B. McKeon,et al.  Laminar Separation Bubble Manipulation with Dynamic Roughness , 2012 .

[32]  M. Gharib,et al.  Effect of Flow Oscillations on Cavity Drag and a Technique for Their Control , 1985 .

[33]  Jerry Westerweel,et al.  On velocity gradients in PIV interrogation , 2008 .

[34]  Roger Temam,et al.  DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms , 2001, Journal of Fluid Mechanics.

[35]  Fujio Yamamoto,et al.  Unsteady PTV velocity field past an airfoil solved with DNS: Part 2. Validation and application at Reynolds numbers up to Re ≤ 104 , 2009 .