Reconstruction of context-specific genome-scale metabolic models using multiomics data to study metabolic rewiring

Abstract Metabolic rewiring or reprogramming is the alteration of metabolism in living organisms, leading to disordered states aberrant from homeostasis. As large amounts of omics data become available, complex mechanisms leading to or driven by metabolic rewiring of cells can be better understood using reconstructed context-specific genome-scale metabolic models (GEMs). Here, we review recent advances in reconstructing context-specific GEMs for studying metabolic rewiring of human cells or tissues, from generic GEMs and omics databases to multiomics data integration methods. Also, we review recent studies that use context-specific GEMs to obtain insights such as identifying key regulators or therapeutic targets. Analyses of recent trends indicate the importance of integrating context-specific GEMs with multiscale networks for understanding metabolic diseases and advancing precision medicine.

[1]  E. Gottlieb,et al.  Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress , 2018, Nature Communications.

[2]  K. Shubham,et al.  Systems-level organization of non-alcoholic fatty liver disease progression network. , 2017, Molecular bioSystems.

[3]  Lennart Martens,et al.  PRIDE: The proteomics identifications database , 2005, Proteomics.

[4]  Thawfeek M. Varusai,et al.  The Reactome Pathway Knowledgebase , 2017, Nucleic acids research.

[5]  Jens Nielsen,et al.  Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance. , 2016, Cell metabolism.

[6]  Marcus J. Tindall,et al.  Multi-scale, whole-system models of liver metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease , 2018, npj Systems Biology and Applications.

[7]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[8]  Daniel Machado,et al.  Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism , 2014, PLoS Comput. Biol..

[9]  D. Machado,et al.  Fast automated reconstruction of genome-scale metabolic models for microbial species and communities , 2018, bioRxiv.

[10]  Yazdan Asgari,et al.  Exploring candidate biomarkers for lung and prostate cancers using gene expression and flux variability analysis. , 2018, Integrative biology : quantitative biosciences from nano to macro.

[11]  L. Joosten,et al.  Identification of Discriminating Metabolic Pathways and Metabolites in Human PBMCs Stimulated by Various Pathogenic Agents , 2018, Front. Physiol..

[12]  Robert Petryszak,et al.  ArrayExpress update—simplifying data submissions , 2014, Nucleic Acids Res..

[13]  Natapol Pornputtapong,et al.  Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT , 2012, PLoS Comput. Biol..

[14]  Christoph Steinbeck,et al.  MetaboLights: An Open‐Access Database Repository for Metabolomics Data , 2016, Current protocols in bioinformatics.

[15]  Venkat R. Pannala,et al.  Metabolic network-based predictions of toxicant-induced metabolite changes in the laboratory rat , 2018, Scientific Reports.

[16]  Desmond S. Lun,et al.  Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production , 2009, PLoS Comput. Biol..

[17]  Hao Wang,et al.  RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor , 2018, bioRxiv.

[18]  Nathan D. Price,et al.  Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE , 2012, BMC Systems Biology.

[19]  Antje Chang,et al.  BRENDA in 2017: new perspectives and new tools in BRENDA , 2016, Nucleic Acids Res..

[20]  Jae Sung Cho,et al.  Systems Metabolic Engineering of Escherichia coli , 2016, EcoSal Plus.

[21]  Adam M. Feist,et al.  iML1515, a knowledgebase that computes Escherichia coli traits , 2017, Nature Biotechnology.

[22]  Jason A. Papin,et al.  Functional integration of a metabolic network model and expression data without arbitrary thresholding , 2011, Bioinform..

[23]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[24]  Lars M. Blank,et al.  Integration of genome-scale metabolic networks into whole-body PBPK models shows phenotype-specific cases of drug-induced metabolic perturbation , 2018, npj Systems Biology and Applications.

[25]  E. Ruppin,et al.  Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease , 2016, Nature Communications.

[26]  Avlant Nilsson,et al.  Recon3D: A Resource Enabling A Three-Dimensional View of Gene Variation in Human Metabolism , 2018, Nature Biotechnology.

[27]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Neil Swainston,et al.  Recon 2.2: from reconstruction to model of human metabolism , 2016, Metabolomics.

[29]  E. Brunt,et al.  Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. , 2012, Journal of hepatology.

[30]  P. Ward,et al.  Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. , 2012, Cancer cell.

[31]  H. Kim,et al.  Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133 , 2017, Scientific Reports.

[32]  Helmut Krcmar,et al.  ProteomicsDB , 2017, Nucleic Acids Res..

[33]  Amina A. Qutub,et al.  Reconstruction of Tissue-Specific Metabolic Networks Using CORDA , 2016, PLoS Comput. Biol..

[34]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[35]  Jason A. Papin,et al.  Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions , 2017, Nature Communications.

[36]  Bernhard O. Palsson,et al.  Context-Specific Metabolic Networks Are Consistent with Experiments , 2008, PLoS Comput. Biol..

[37]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[38]  F. Pontén,et al.  The Human Protein Atlas—a tool for pathology , 2008, The Journal of pathology.

[39]  Jae Sung Cho,et al.  Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals , 2017, Microbial biotechnology.

[40]  Eytan Ruppin,et al.  Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer , 2014, eLife.

[41]  Hyun Uk Kim,et al.  Current state and applications of microbial genome-scale metabolic models , 2017 .

[42]  Eytan Ruppin,et al.  iMAT: an integrative metabolic analysis tool , 2010, Bioinform..

[43]  J. Nielsen,et al.  Systems biology in hepatology: approaches and applications , 2018, Nature Reviews Gastroenterology & Hepatology.

[44]  C. Ouzounis,et al.  Expansion of the BioCyc collection of pathway/genome databases to 160 genomes , 2005, Nucleic acids research.

[45]  Jonas Grossmann,et al.  Functional proteomics outlines the complexity of breast cancer molecular subtypes , 2017, Scientific Reports.

[46]  N. Price,et al.  Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[47]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[48]  Emanuel J. V. Gonçalves,et al.  Post-translational regulation of metabolism in fumarate hydratase deficient cancer cells , 2017, bioRxiv.

[49]  Toshihisa Takagi,et al.  DNA Data Bank of Japan: 30th anniversary , 2017, Nucleic Acids Res..

[50]  Yangyang Zhao,et al.  BioModels: ten-year anniversary , 2014, Nucleic Acids Res..

[51]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[52]  Nuno A. Fonseca,et al.  Expression Atlas: gene and protein expression across multiple studies and organisms , 2017, Nucleic Acids Res..

[53]  Catherine Brooksbank,et al.  The European Bioinformatics Institute’s data resources , 2009, Nucleic Acids Res..

[54]  Ronan M. T. Fleming,et al.  Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota , 2016, Nature Biotechnology.

[55]  E. Ruppin,et al.  Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism , 2010, Molecular systems biology.

[56]  Bernhard O. Palsson,et al.  GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data , 2013, Bioinform..

[57]  T. Shlomi,et al.  MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks , 2012, Genome Biology.

[58]  Jae Yong Ryu,et al.  Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism , 2017, Proceedings of the National Academy of Sciences.

[59]  Ernesto S. Nakayasu,et al.  Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation , 2012, Molecular systems biology.

[60]  M. Uhlén,et al.  Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease , 2014, Nature Communications.

[61]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[62]  M. Ataman,et al.  Heading in the right direction: thermodynamics-based network analysis and pathway engineering. , 2015, Current opinion in biotechnology.

[63]  Jens Nielsen,et al.  Network analyses identify liver‐specific targets for treating liver diseases , 2017, Molecular systems biology.

[64]  B. Gao,et al.  Hepatocytes: a key cell type for innate immunity , 2015, Cellular and Molecular Immunology.

[65]  V. Tremaroli,et al.  Linking Microbiota to Human Diseases: A Systems Biology Perspective , 2015, Trends in Endocrinology & Metabolism.

[66]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[67]  David A Hanauer,et al.  Bioinformatics approaches in the study of cancer. , 2007, Current molecular medicine.

[68]  Nikos Vlassis,et al.  Fast Reconstruction of Compact Context-Specific Metabolic Network Models , 2013, PLoS Comput. Biol..

[69]  Jens Nielsen,et al.  An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. , 2018, Cell metabolism.

[70]  Edward J. O'Brien,et al.  Using Genome-scale Models to Predict Biological Capabilities , 2015, Cell.

[71]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[72]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[73]  Philip Miller,et al.  BiGG Models: A platform for integrating, standardizing and sharing genome-scale models , 2015, Nucleic Acids Res..

[74]  J. Nielsen,et al.  Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling , 2014, Molecular systems biology.

[75]  F. He,et al.  Revealing the metabolic characteristics of human embryonic stem cells by genome‐scale metabolic modeling , 2018, FEBS letters.

[76]  G. Bedogni,et al.  A simple index of lipid overaccumulation is a good marker of liver steatosis , 2010, BMC gastroenterology.