Random Bernstein Polynomials

Random Bernstein polynomials which are also probability distribution functions on the closed unit interval are studied. The probability law of a Bernstein polynomial so defined provides a novel prior on the space of distribution functions on [0, 1] which has full support and can easily select absolutely continuous distribution functions with a continuous and smooth derivative. In particular, the Bernstein polynomial which approximates a Dirichlet process is studied. This may be of interest in Bayesian non‐parametric inference. In the second part of the paper, we study the posterior from a “Bernstein–Dirichlet” prior and suggest a hybrid Monte Carlo approximation of it. The proposed algorithm has some aspects of novelty since the problem under examination has a “changing dimension” parameter space.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  D. Freedman,et al.  Random distribution functions , 1963 .

[3]  C. Kraft A class of distribution function processes which have derivatives , 1964, Journal of Applied Probability.

[4]  W. Feller,et al.  An Introduction to Probability Theory and its Applications, Vol. II , 1967 .

[5]  M. Métivier Sur la construction de mesures aléatoires presque sûrement absolument continues par rapport à une mesure donnée , 1971 .

[6]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[7]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[8]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[9]  K. Doksum Tailfree and Neutral Random Probabilities and Their Posterior Distributions , 1974 .

[10]  S. Dalal,et al.  On Approximating Parametric Bayes Models by Nonparametric Bayes Models , 1980 .

[11]  J. Sethuraman,et al.  Convergence of Dirichlet Measures and the Interpretation of Their Parameter. , 1981 .

[12]  S. Schaefer,et al.  Measuring a Tax-Specific Term Structure of Interest Rates in the Market for British Government Securities , 1981 .

[13]  W. J. Hall,et al.  Approximating Priors by Mixtures of Natural Conjugate Priors , 1983 .

[14]  T. Ferguson BAYESIAN DENSITY ESTIMATION BY MIXTURES OF NORMAL DISTRIBUTIONS , 1983 .

[15]  D. Freedman,et al.  On the consistency of Bayes estimates , 1986 .

[16]  On topological support of Dirichlet prior , 1992 .

[17]  More Aspects of Polya Tree Distributions for Statistical Modelling , 1992 .

[18]  W. Sudderth,et al.  Polya Trees and Random Distributions , 1992 .

[19]  Michel Mouchart,et al.  Bayesian Analysis of Mixtures : Some results on Exact Estimability and Identification , 1992 .

[20]  D. Freedman,et al.  Nonparametric Binary Regression: A Bayesian Approach , 1993 .

[21]  Hani Doss Bayesian Nonparametric Estimation for Incomplete Data Via Successive Substitution Sampling , 1994 .

[22]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[23]  Axel Tenbusch,et al.  Two-dimensional Bernstein polynomial density estimators , 1994 .

[24]  Bani K. Mallick,et al.  Generalized linear models with unknown link functions , 1994 .

[25]  Nils Lid Hjort,et al.  Bayesian Approaches to Non- and Semiparametric Density Estimation , 1994 .

[26]  Francesco Altomare,et al.  Korovkin-type approximation theory and its applications , 1994 .

[27]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[28]  M. Lavine More Aspects of Polya Tree Distributions for Statistical Modelling , 1992 .

[29]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[30]  S. MacEachern Estimating normal means with a conjugate style dirichlet process prior , 1994 .

[31]  Cheng Cheng,et al.  The Bernstein polynomial estimator of a smooth quantile function , 1995 .

[32]  R. Mauldin,et al.  Randomly generated distributions , 1995 .

[33]  T. M. Mills,et al.  Korovkin-type Approximation Theory and Its Applications, de Gruyter Studies in Mathematics 17, F. Altomare and M. Campiti, Walter de Gruyter, Berlin, 1994, xi + 627 pp , 1995 .

[34]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[35]  Polinomi di Bernstein e processo di Dirichlet , 1996 .

[36]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[37]  Antonietta Mira,et al.  Bayesian hierarchical nonparametric inference for change-point problems , 1996 .

[38]  Jun S. Liu Nonparametric hierarchical Bayes via sequential imputations , 1996 .

[39]  A. Raftery,et al.  A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability , 1997 .

[40]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[41]  J. Rosenthal,et al.  A note on convergence rates of Gibbs sampling for nonparametric mixtures. , 1999 .

[42]  W. Schaafsma,et al.  A semi-Bayesian method for nonparametric density estimation , 1999 .

[43]  Sonia Petrone Bayesian density estimation using bernstein polynomials , 1999 .