g-C3N4/TiO2 uniformly distributed microspheres: preparation for enhanced photocatalytic performance by co-calcination

[1]  Guangbo Che,et al.  Tremella-like integrated carbon nitride with polyvinylimine-doped for enhancing photocatalytic degradation and hydrogen evolution performances , 2021, Separation and Purification Technology.

[2]  Hongji Li,et al.  Enhanced photocatalytic hydrogen evolution of 2D/2D N-Sn3O4/g-C3N4 S-scheme heterojunction under visible light irradiation , 2021 .

[3]  Hongji Li,et al.  Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-Scheme heterojunction under visible light irradiation , 2021, Journal of Alloys and Compounds.

[4]  Jichao Wang,et al.  pH-controlled mechanism of photocatalytic RhB degradation over g-C3N4 under sunlight irradiation , 2021, Photochemical & Photobiological Sciences.

[5]  Wei Zhao,et al.  g-C3N4/TiO2 composite microspheres: in situ growth and high visible light catalytic activity , 2020 .

[6]  S. Bourouina-Bacha,et al.  Method for attachment of TiO2 using design of experiments: application to the photocatalysis of a model pollutant methylene blue dye. , 2020, Water science and technology : a journal of the International Association on Water Pollution Research.

[7]  Caijin Huang,et al.  Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation , 2020 .

[8]  N. R. Khalid,et al.  Photocatalytic degradation of RhB from an aqueous solution using Ag3PO4/N-TiO2 heterostructure , 2020 .

[9]  V. Keller,et al.  Au/TiO2(P25)-gC3N4 composites with low gC3N4 content enhance TiO2 sensitization for remarkable H2 production from water under visible-light irradiation , 2020 .

[10]  高晗,et al.  TiO 2 -g-C 3 N 4 复合材料的制备及其在水泥石表面的应用 , 2020 .

[11]  Rui Shan,et al.  Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions , 2020, Materials Science in Semiconductor Processing.

[12]  Cheng Yan,et al.  Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. , 2020, Journal of hazardous materials.

[13]  Xiaoguang Meng,et al.  Boosted photocatalytic degradation of Rhodamine B pollutants with Z-scheme CdS/AgBr-rGO nanocomposite , 2020 .

[14]  Zhibo Ma,et al.  Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges , 2019, Advanced materials.

[15]  Zhengxin Fei,et al.  Facile synthesis of high-performance photocatalysts based on Ag/TiO2 composites , 2019, Ceramics International.

[16]  Juan Li,et al.  The effect of N-doped form on visible light photoactivity of Z-scheme g-C3N4/TiO2 photocatalyst , 2019, Applied Surface Science.

[17]  Ali Akbar Isari,et al.  Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies , 2018, Applied Surface Science.

[18]  Yaqing Feng,et al.  Compositing Two-Dimensional Materials with TiO2 for Photocatalysis , 2018, Catalysts.

[19]  M. Zimbone,et al.  Ag/TiO2 nanocomposite for visible light-driven photocatalysis , 2018, Superlattices and Microstructures.

[20]  M. Chehimi,et al.  Chitosan-Ag-TiO2 films: An effective photocatalyst under visible light. , 2018, Carbohydrate polymers.

[21]  D. Shah,et al.  Enhanced Photocatalytic Efficiency of a Least Active Ag–TiO2 by Amine Adsorption , 2018, ACS omega.

[22]  Pawan Kumar,et al.  Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting , 2018, Carbon.

[23]  W. Sirisaksoontorn,et al.  Homogeneous distribution of nanosized ZnO in montmorillonite clay sheets for the photocatalytic enhancement in degradation of Rhodamine B , 2018, Research on Chemical Intermediates.

[24]  Hong-Yan Chen,et al.  Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells , 2017 .

[25]  L. Escobar-Alarcón,et al.  Effluent Disinfection of Real Wastewater by Ag–TiO₂ Nanoparticles Photocatalysis. , 2017, Journal of nanoscience and nanotechnology.

[26]  Hua Tang,et al.  Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity , 2016 .

[27]  S. Tirukkovalluri,et al.  One step synthesis and characterization of copper doped sulfated titania and its enhanced photocatalytic activity in visible light by degradation of methyl orange , 2016 .

[28]  Li Wang,et al.  Controlling surface and interface of TiO2 toward highly efficient photocatalysis , 2015 .

[29]  Wei Zhao,et al.  Control over the morphology of TiO2 hierarchically structured microspheres in solvothermal synthesis , 2015 .

[30]  Xinchen Wang,et al.  Helical graphitic carbon nitrides with photocatalytic and optical activities. , 2014, Angewandte Chemie.

[31]  Donghui Wang,et al.  The photocatalysis and mechanism of new SrTiO3/TiO2 , 2014 .

[32]  M. Xing,et al.  Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. , 2014, Journal of the American Chemical Society.

[33]  W. Ho,et al.  In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. , 2013, ACS applied materials & interfaces.

[34]  A. Fujishima,et al.  Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications , 2012 .

[35]  Li Wang,et al.  Visible–Light–Induced Photodegradation of Rhodamine B over Hierarchical TiO2: Effects of Storage Period and Water-Mediated Adsorption Switch , 2012 .

[36]  A. Fujishima,et al.  TiO2 photocatalysis: Design and applications , 2012 .

[37]  K. Zhao,et al.  Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. , 2012, Chemical communications.

[38]  S. Luo,et al.  Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film. , 2010, Journal of hazardous materials.

[39]  M. Antonietti,et al.  Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. , 2010, Journal of the American Chemical Society.

[40]  Z. Zou,et al.  Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[41]  R. Schlögl,et al.  Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts , 2008 .

[42]  Y. Chéron,et al.  Design and Applications , 1992 .

[43]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.