Fast and efficient hydrogen generation catalyzed by cobalt talc nanolayers dispersed in silica aerogel

Cobalt talc nanolayers dispersed in silica aerogel constitute an active nanocomposited material with outstanding catalytic properties for the generation of hydrogen by ethanol steam reforming at low temperature. Delamination of talc particles into individual nanolayers of ca. 1.8 nm thick readily occurs under the reforming conditions, which results in a strong enhancement of the exposed catalytic active area. The presence of aerogel assures the immobilization of the talc nanolayers resulting from the delamination while maintaining an excellent mass transfer of products and reactants to the surface of the talc nanolayers. A fast and reversible surface activation for the steam reforming of ethanol occurs at 580–590 K under the reforming conditions. Magnetic characterization and in situ X-ray photoelectron spectroscopy (XPS) show the non-reversible formation of metal cobalt ensembles during activation, which escape HRTEM detection. This material appears as a good candidate for on-board hydrogen generation from ethanol–water mixtures for mobile and portable fuel cell applications.

[1]  J. Llorca,et al.  Catalytic walls and micro-devices for generating hydrogen by low temperature steam reforming of ethanol , 2009 .

[2]  J. Llorca,et al.  Electrophoretic deposition of Co-Me/ZnO (Me ( Mn,Fe) ethanol steam reforming catalysts on stainless steel plates , 2009 .

[3]  Houssam El-Rassy,et al.  Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors , 2009 .

[4]  A. Falqui,et al.  Structural and Magnetic Characterization of Co and Ni Silicate Hydroxides in Bulk and in Nanostructures within Silica Aerogels , 2009 .

[5]  U. Ozkan,et al.  Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility , 2009 .

[6]  Robert E. Rettew,et al.  A phenomenological study of the metal-oxide interface: the role of catalysis in hydrogen production from renewable resources. , 2008, ChemSusChem.

[7]  Jordi Llorca,et al.  Co–SiO2 aerogel-coated catalytic walls for the generation of hydrogen , 2008 .

[8]  J. Llorca,et al.  Catalytic monoliths for ethanol steam reforming , 2008 .

[9]  R. Alcubilla,et al.  First use of macroporous silicon loaded with catalyst film for a chemical reaction: a microreformer for producing hydrogen from ethanol steam reforming , 2008 .

[10]  J. Llorca,et al.  Autothermal generation of hydrogen from ethanol in a microreactor , 2008 .

[11]  S. Tuti,et al.  On the Catalytic Activity of Cobalt Oxide for the Steam Reforming of Ethanol , 2008 .

[12]  Umit S. Ozkan,et al.  Investigation of bio-ethanol steam reforming over cobalt-based catalysts , 2007 .

[13]  D. Leung,et al.  A review on reforming bio-ethanol for hydrogen production , 2007 .

[14]  J. Torres,et al.  Steam reforming of ethanol at moderate temperature: Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts , 2007 .

[15]  M. Benito,et al.  Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure , 2007 .

[16]  K. Choo,et al.  Low-temperature continuous wet oxidation of trichloroethylene over CoOx/TiO2 catalysts , 2007 .

[17]  Yong-Qing Zhao,et al.  Electrochemical characteristics and impedance spectroscopy studies of nano-cobalt silicate hydroxide for supercapacitor , 2006 .

[18]  Alírio E. Rodrigues,et al.  Insight into steam reforming of ethanol to produce hydrogen for fuel cells , 2006 .

[19]  J. Chai,et al.  Thermal behaviour of ultra-thin Co overlayers on rutile TiO2(1 0 0) surface , 2005 .

[20]  N. Shah,et al.  Characteristics of Cobalt Nanoneedles in 10% Co/Aerogel Fischer−Tropsch Catalyst , 2005 .

[21]  Agus Haryanto,et al.  Current status of hydrogen production techniques by steam reforming of ethanol : A review , 2005 .

[22]  J. Fierro,et al.  Catalysts based on Co/zirconium doped mesoporous silica MSU for the hydrogenation and hydrogenolysis/hydrocracking of tetralin , 2005 .

[23]  R. Pugmire,et al.  Silica aerogel supported catalysts for Fischer–Tropsch synthesis , 2005 .

[24]  F. Martín,et al.  Refined relationship between the position of the fundamental OH stretching and the first overtones for clays , 2004 .

[25]  J. Llorca,et al.  In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts , 2004 .

[26]  J. Dalmon,et al.  Transformation of Co3O4 during Ethanol Steam-Re-forming. Activation Process for Hydrogen Production , 2004 .

[27]  E. Assaf,et al.  High efficiency steam reforming of ethanol by cobalt-based catalysts , 2004 .

[28]  A. Kaddouri,et al.  A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming , 2004 .

[29]  J. Fierro,et al.  Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol , 2004 .

[30]  J. Dalmon,et al.  CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts , 2003 .

[31]  F. Frusteri,et al.  Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts , 2003 .

[32]  J. Dalmon,et al.  In situ magnetic characterisation of supported cobalt catalysts under steam-reforming of ethanol , 2003 .

[33]  M. Jobbágy,et al.  Cu-Ni-K/γ-Al2O3 supported catalysts for ethanol steam reforming: Formation of hydrotalcite-type compounds as a result of metal–support interaction , 2003 .

[34]  M. Casula,et al.  Iron-Cobalt-Silica Aerogel Nanocomposite Materials , 2003 .

[35]  Pilar Ramírez de la Piscina,et al.  Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming , 2002 .

[36]  R. Frost,et al.  Low temperature synthesis of cobalt clays , 2002 .

[37]  F. Ruiz,et al.  Cobalt Oxide/Silica Xerogels Powders: X-Ray Diffraction, Infrared and Visible Absorption Studies , 2002 .

[38]  M. Casula,et al.  FeCo–SiO2 nanocomposite aerogels by high temperature supercritical drying , 2002 .

[39]  D. Borgmann,et al.  The behavior of vapor deposited Co layers on MoO3 surfaces at 90 and 300 K , 2001 .

[40]  G. D. Piero,et al.  Metal–support interaction in Co/SiO2 and Co/TiO2 , 2000 .

[41]  A. Kiennemann,et al.  Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts , 1999 .

[42]  W. L. Vasconcelos,et al.  Influence of processing variables on the pore structure of silica gels obtained with tetraethylorthosilicate , 1999 .

[43]  J. P. Espinós,et al.  Control of the stoichiometry in the deposition of cobalt oxides on SiO2 , 1998 .

[44]  T. Nakajima,et al.  Catalytic properties of supported cobalt catalysts for steam reforming of ethanol , 1997 .

[45]  B. G. Baker,et al.  Characterization of cobalt Fischer-Tropsch catalysts I. Unpromoted cobalt-silica gel catalysts , 1995 .

[46]  E. E. Khawaja,et al.  X-ray photoelectron spectroscopy study of sodium germanate glass containing cobalt oxide , 1992 .

[47]  Kuiper,et al.  Electronic structure of CoO, Li-doped CoO, and LiCoO2. , 1991, Physical review. B, Condensed matter.

[48]  J. V. Sanders,et al.  Hydrothermal Synthesis and Characterization of Cobalt Clays , 1986 .

[49]  G. Martin,et al.  Silicates basiques de cobalt : talc et antigorite. synthèse, propriétés morphologiques, étude de la décomposition thermique et de la réduction par l’hydrogène. Étude granulométrique de catalyseurs de cobalt déposé sur silice ainsi obtenus , 1973 .