Compact silicon multimode waveguide spectrometer with enhanced bandwidth

Compact, broadband, and high-resolution spectrometers are appealing for sensing applications, but difficult to fabricate. Here we show using calibration data a spectrometer based on a multimode waveguide with 2 GHz resolution, 250 GHz bandwidth, and a 1.6 mm × 2.1 mm footprint. Typically, such spectrometers have a bandwidth limited by the number of modes supported by the waveguide. In this case, an on-chip mode-exciting element is used to repeatably excite distinct collections of waveguide modes. This increases the number of independent spectral channels from the number of modes to this number squared, resulting in an extension of the usable range.

[1]  S. J. B. Yoo,et al.  Ultra-Compact Silicon Photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  M. Lipson,et al.  Sub-nm resolution cavity enhanced microspectrometer. , 2010, Optics express.

[3]  T. Murphy,et al.  Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides , 2008, Journal of Lightwave Technology.

[4]  S. Lourdudoss,et al.  5 GHz channel spacing InP-based 32-channel Arrayed-Waveguide Grating , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[5]  Siegfried Janz,et al.  High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. , 2013, Optics letters.

[6]  Brandon Redding,et al.  All-fiber spectrometer based on speckle pattern reconstruction. , 2013, Optics express.

[7]  H. Cao,et al.  Compact spectrometer based on a disordered photonic chip , 2013, Nature Photonics.

[8]  P Waldron,et al.  A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. , 2007, Optics express.

[9]  Namrata Vaswani,et al.  Recursive Recovery of Sparse Signal Sequences From Compressive Measurements: A Review , 2016, IEEE Transactions on Signal Processing.

[10]  Lawrence Carin,et al.  Spectral-temporal compressive imaging. , 2015, Optics letters.

[11]  Y. Bromberg,et al.  Evanescently coupled multimode spiral spectrometer , 2016, 1603.01612.

[12]  Peng Wang,et al.  Computational spectroscopy via singular-value decomposition and regularization. , 2014, Optics express.

[13]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[14]  Matthias Hein,et al.  Non-negative least squares for high-dimensional linear models: consistency and sparse recovery without regularization , 2012, 1205.0953.

[15]  Masaaki Imai Statistical Properties of Optical Fiber Speckles , 1986 .

[16]  Haw,et al.  Multimode waveguide speckle patterns for compressive sensing , 2016 .

[17]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[18]  Thomas Strohmer,et al.  General Deviants: An Analysis of Perturbations in Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.

[19]  Siegfried Janz,et al.  Development of a Fourier-transform waveguide spectrometer for space applications , 2012 .

[20]  Edson Porto da Silva,et al.  Joint IQ Skew and Chromatic Dispersion Estimation for Coherent Optical Communication Receivers , 2016 .

[21]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[22]  Mario Martinelli,et al.  Determination of bend mode characteristics in dielectric waveguides , 2001 .

[23]  Kishan Dholakia,et al.  Random super-prism wavelength meter. , 2014, Optics letters.

[24]  Darko Zibar,et al.  Compact spectrometer based on a silicon multimode waveguide , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[25]  Per Christian Hansen,et al.  A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems , 2008 .

[26]  Brandon Redding,et al.  Noise analysis of spectrometers based on speckle pattern reconstruction. , 2014, Applied optics.

[27]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[28]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[29]  F. Mezzadri How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.

[30]  Noel H. Wan,et al.  High-resolution optical spectroscopy using multimode interference in a compact tapered fibre , 2015, Nature Communications.