Neural inverse optimal control for a linear induction motor

This paper presents a discrete-time inverse optimal control for trajectory tracking applied to a three-phase linear induction motor (LIM). An on-line neural identifier, which uses a recurrent high-order neural network (RHONN) trained with the Extended Kalman Filter (EKF), is employed in order to build a mathematical model for the nonlinear system. This model is in the Nonlinear Block Controller (NBC) form. The control law calculates the input voltage signals, which are inverse optimal in the sense that they minimize a cost functional without solving the Hamilton Jacobi Bellman (HJB) equation. The applicability of the proposed control scheme is illustrated via simulation.

[1]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[2]  Alexander G. Loukianov,et al.  Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[3]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[4]  E. Sánchez,et al.  Inverse optimal control for discrete‐time nonlinear systems via passivation , 2014 .

[5]  Theodore Wildi,et al.  Electrical Machines, Drives, and Power Systems , 1990 .

[6]  Alexander G. Loukianov,et al.  Real-Time Recurrent Neural State Estimation , 2011, IEEE Transactions on Neural Networks.

[7]  Edgar N. Sánchez,et al.  Discrete-time reduced order neural observer for Linear Induction Motors , 2011, 2011 IEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG).

[8]  Ganesh K. Venayagamoorthy,et al.  Smart grid and electric transportation , 2009 .

[9]  Alexander G. Loukianov,et al.  Robust Block Decomposition Sliding Mode Control Design , 2002 .

[10]  Alexander G. Loukianov,et al.  Discrete-Time High Order Neural Control - Trained with Kaiman Filtering , 2010, Studies in Computational Intelligence.

[11]  Ion Boldea,et al.  Linear electric actuators and generators , 1997, 1997 IEEE International Electric Machines and Drives Conference Record.

[12]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[13]  I. Boldea,et al.  Linear Electric Actuators and Generators: Linear Electric Actuators and Generators , 1997 .

[14]  E. Matkevičius,et al.  The Generalized Model of the Linear Induction Motor , 2006 .

[15]  Hamid A. Toliyat,et al.  Handbook of Electric Motors , 2004 .

[16]  Edgar N. Sanchez,et al.  Discrete-Time Inverse Optimal Control for Nonlinear Systems , 2013 .

[17]  Haroutuon A. Hairik,et al.  Dynamic Model of Linear Induction Motor Considering the End Effects , 2009 .

[18]  Manolis A. Christodoulou,et al.  Adaptive Control with Recurrent High-order Neural Networks , 2000, Advances in Industrial Control.

[19]  P. B. Coaker,et al.  Applied Dynamic Programming , 1964 .

[20]  Guanrong Chen,et al.  Discrete-Time Output Trajectory Tracking by Recurrent High-Order Neural Network Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[21]  F. T. Barwell,et al.  Linear induction motors for high-speed railways , 1964 .

[22]  J. Hopfield Neurons withgraded response havecollective computational properties likethoseoftwo-state neurons , 1984 .

[23]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[24]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .