A linguistic approach to time series modeling with the help of F-transform

In this paper, we describe an approach to modeling and forecasting time series that uses the theory of evaluative linguistic expressions, fuzzy/linguistic IF-THEN rules and the fuzzy transform method. We show that the use of a linguistic approach allows better readability and understandability without any significant deterioration in precision.

[1]  Vilém Novák,et al.  Analysis and prediction of time series using fuzzy transform , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[2]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[3]  B. Chissom,et al.  Fuzzy time series and its models , 1993 .

[4]  Irina Perfilieva,et al.  Fuzzy Transforms in Removing Noise , 2004, Fuzzy Days.

[5]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[6]  Vilém Novák,et al.  A comprehensive theory of trichotomous evaluative linguistic expressions , 2008, Fuzzy Sets Syst..

[7]  Vilém Novák Perception-Based Logical Deduction , 2004, Fuzzy Days.

[8]  Vilém Novák,et al.  Logical structure of fuzzy IF-THEN rules , 2006, Fuzzy Sets Syst..

[9]  Chih-Chuan Chen,et al.  Deterministic vector long-term forecasting for fuzzy time series , 2010, Fuzzy Sets Syst..

[10]  Amaury Lendasse,et al.  Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation , 2010, Fuzzy Sets Syst..

[11]  Martin Stepnicka,et al.  A neural network approach to the fuzzy transform , 2009, Fuzzy Sets Syst..

[12]  Gwo-Hshiung Tzeng,et al.  Fuzzy ARIMA model for forecasting the foreign exchange market , 2001, Fuzzy Sets Syst..

[13]  Vilém Novák,et al.  On the semantics of perception‐based fuzzy logic deduction , 2004, Int. J. Intell. Syst..

[14]  Vilém Novák,et al.  Continuity issues of the implicational interpretation of fuzzy rules , 2010, Fuzzy Sets Syst..

[15]  J. Peregrin Extensional vs. Intensional Logic , 2007 .

[16]  José Manuel Benítez,et al.  Smooth transition autoregressive models and fuzzy rule-based systems: Functional equivalence and consequences , 2007, Fuzzy Sets Syst..

[17]  R. Carnap Meaning and necessity : a study in semantics and modal logic , 1948 .

[18]  Kunhuang Huarng,et al.  Heuristic models of fuzzy time series for forecasting , 2001, Fuzzy Sets Syst..

[19]  James D. Hamilton Time Series Analysis , 1994 .

[20]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[21]  P. Sgall,et al.  Topic-focus articulation, tripartite structures, and semantic content , 1998 .

[22]  Hashim Habiballa,et al.  The concept of LFLC 2000 - its specificity, realization and power of applications , 2003, Comput. Ind..

[23]  Vilém Novák,et al.  Towards Formalized Integrated Theory of Fuzzy Logic , 1995 .

[24]  T. Martin McGinnity,et al.  An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network , 2005, Fuzzy Sets Syst..

[25]  Lotfi A. Zadeh,et al.  Precisiated Natural Language (PNL) , 2004, AI Mag..

[26]  Bogdan Gabrys,et al.  Meta-learning for time series forecasting in the NN GC1 competition , 2010, International Conference on Fuzzy Systems.

[27]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[28]  Vilém Novák,et al.  Learning rule base in linguistic expert systems , 2002, Soft Comput..

[29]  Fred L. Collopy,et al.  Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons , 1992 .

[30]  Vilém Novák,et al.  On the semantics of perception-based fuzzy logic deduction: Research Articles , 2004 .

[31]  Vilém Novák,et al.  Linguistically oriented fuzzy logic control and its design , 1995, Int. J. Approx. Reason..

[32]  Paramasivan Saratchandran,et al.  Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction , 2006, Fuzzy Sets Syst..

[33]  Paulo Cortez,et al.  Sensitivity analysis for time lag selection to forecast seasonal time series using Neural Networks and Support Vector Machines , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[34]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[35]  Spyros Makridakis,et al.  The M3-Competition: results, conclusions and implications , 2000 .

[36]  Peter Bauer,et al.  Interpretability of linguistic variables: a formal account , 2005, Kybernetika.

[37]  Zeungnam Bien,et al.  Fuzzy Logic and its Applications to Engineering, Information Sciences, and Intelligent Systems , 1995, Theory and Decision Library.

[38]  Lotfi A. Zadeh,et al.  Precisiated Natural Language , 2007, Aspects of Automatic Text Analysis.

[39]  J. Casillas Interpretability issues in fuzzy modeling , 2003 .

[40]  Vilém Novák,et al.  Reasoning about mathematical fuzzy logic and its future , 2012, Fuzzy Sets Syst..

[41]  Johannes Ledolter,et al.  Statistical methods for forecasting , 1983 .

[42]  Olof Bryngdahl,et al.  Regular occurance of simultaneous brightness contrast in the mesopic region , 1965, Kybernetik.

[43]  Henri Prade,et al.  What are fuzzy rules and how to use them , 1996, Fuzzy Sets Syst..

[44]  Willard Van Orman Quine,et al.  Philosophy of Logic. , 1988 .

[45]  Petr Sgall,et al.  The Meaning Of The Sentence In Its Semantic And Pragmatic Aspects , 1986 .

[46]  Spyros Makridakis,et al.  The M3-Competition1 , 2000 .

[47]  Irina Perfilieva,et al.  Fuzzy transforms: Theory and applications , 2006, Fuzzy Sets Syst..

[48]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[49]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[50]  Martina Danková,et al.  On approximate reasoning with graded rules , 2007, Fuzzy Sets Syst..