Delocalization Contributions to Polyacetylene Force Fields

Abstract The force fields of trans and cis-polyacetylene(PA) are obtained in internal coordinates by combining linear-response analysis of the Raman and ir shifts due to π-electrons, molecular force-field methods, and the Huckel susceptibility of k ≠ 0 phonons. We find transferable electron-phonon coupling constants, exponential transfer integrals t(R), and coupling to CCC bends through the Coulomb potential V(R). The electronic response of cis-PA is 56% of the trans susceptibility, indicative of reduced delocalization and an energy gap in the Ag manifold due to third-neighbor V(R) terms.

[1]  H. C. Longuet-Higgins,et al.  The alternation of bond lengths in long conjugated chain molecules , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  R. Clark,et al.  Spectroscopy of advanced materials , 1991 .

[3]  Vardeny,et al.  Amplitude and phase modes in trans-polyacetylene: Resonant Raman scattering and induced infrared activity. , 1987, Physical review. B, Condensed matter.

[4]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[5]  E. Imhoff,et al.  Resonance Raman spectra of cis (CH)x and (CD)x , 1984 .

[6]  Galvão,et al.  Band to correlated crossover in alternating Hubbard and Pariser-Parr-Pople chains: Nature of the lowest singlet excitation of conjugated polymers. , 1993, Physical review letters.

[7]  F. Zerbetto,et al.  Theoretical analysis of spectra of short polyenes , 1991 .

[8]  Terje A. Skotheim,et al.  Electroresponsive Molecular and Polymeric Systems , 1988 .

[9]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[10]  A. Girlando,et al.  Electron–molecular vibration (e–mv) coupling in charge‐transfer compounds and its consequences on the optical spectra: A theoretical framework , 1986 .

[11]  G. Lanzani,et al.  Polarized resonant Raman scattering of cis polyacetylene , 1989 .

[12]  M. Tasumi,et al.  Molecular force fields of s-trans-1,3-butadiene and the second stable conformer. , 1983 .

[13]  H. C. Longuet-Higgins,et al.  The electronic structure of conjugated systems. Parts III and IV , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  A. Girlando,et al.  Electron–phonon coupling in conjugated polymers: Reference force field and transferable coupling constants for polyacetylene , 1993 .

[15]  Richard R. Schrock,et al.  Conjugation length dependence of Raman scattering in a series of linear polyenes: Implications for polyacetylene , 1991 .

[16]  Yukio Furukawa,et al.  Spectroscopic studies on doped polyacetylene and β-carotene , 1980 .

[17]  L. Salem The molecular orbital theory of conjugated systems , 1966 .

[18]  Coulson Ca,et al.  The Electronic Structure of Conjugated Systems. III. Bond Orders in Unsaturated Molecules; IV. Force Constants and Interaction Constants in Unsaturated Hydrocarbons , 1948 .

[19]  Hayden,et al.  Dimerization enhancement in one-dimensional Hubbard and Pariser-Parr-Pople models. , 1988, Physical review. B, Condensed matter.

[20]  Tanaka,et al.  Detection of soliton shape modes in polyacetylene. , 1986, Physical review letters.

[21]  Z. Soos,et al.  Dimerization and Peierls Instability in Polyacetylene , 1988 .