Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit

The psychometric function relates an observer’s performance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function’s parameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (orlapses). We show that failure to account for this can lead to serious biases in estimates of the psychometric function’s parameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditionalX2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods.

[1]  F. Schmidt Statistical Significance Testing and Cumulative Knowledge in Psychology: Implications for Training of Researchers , 1996 .

[2]  D. Collett,et al.  Modeling Binary Data. , 1993 .

[3]  B. Treutwein Adaptive psychophysical procedures , 1995, Vision Research.

[4]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[5]  T E Hanna,et al.  Estimation of psychometric functions from adaptive tracking procedures , 1992, Perception & psychophysics.

[6]  J. O'Regan,et al.  Estimating psychometric functions in forced-choice situations: Significant biases found in threshold and slope estimations when small samples are used , 1989, Perception & psychophysics.

[7]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[8]  M. Forster,et al.  Model Selection in Science: The Problem of Language Variance , 1999, The British Journal for the Philosophy of Science.

[9]  Jacob Nachmias,et al.  On the psychometric function for contrast detection , 1981, Vision Research.

[10]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[11]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[12]  Felix A. Wichmann,et al.  Some Aspects of Modelling Human Spatial Vision: Contrast Discrimination , 1999 .

[13]  H. Strasburger,et al.  Fitting the psychometric function , 1999, Perception & psychophysics.

[14]  W. Swanson,et al.  Extracting thresholds from noisy psychophysical data , 1992, Perception & psychophysics.

[15]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[16]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[17]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[18]  Erwin Kreyszig,et al.  Introductory Mathematical Statistics. , 1970 .

[19]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[20]  J R Dubno,et al.  Placement of observations for the efficient estimation of a psychometric function. , 1996, The Journal of the Acoustical Society of America.

[21]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[22]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[23]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[24]  Alan Agresti,et al.  Introduction to Generalized Linear Models , 2003 .

[25]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[26]  S. R. Searle Linear Models , 1971 .

[27]  J. Gaddum Probit Analysis , 1948, Nature.

[28]  Quick Rf A vector-magnitude model of contrast detection. , 1974 .

[29]  S. McKee,et al.  Statistical properties of forced-choice psychometric functions: Implications of probit analysis , 1985, Perception & psychophysics.

[30]  Eric R. Ziegel,et al.  An Introduction to Generalized Linear Models , 2002, Technometrics.

[31]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[32]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[33]  D. Collett Modelling Binary Data , 1991 .

[34]  A. Watson Probability summation over time , 1979, Vision Research.

[35]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[36]  Lewis O. Harvey,et al.  Efficient estimation of sensory thresholds , 1986 .

[37]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[38]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[39]  Felix Wichmann,et al.  The psychometric function: II. Bootstrap-based confidence intervals and sampling , 2001, Perception & psychophysics.

[40]  J. Lewis,et al.  Probit Analysis (3rd ed). , 1972 .