Current State of the Art for Statistical Modelling of Species Distributions

Over the past decade the number of statistical modelling tools available to ecologists to model species' distributions has increased at a rapid pace (e.g. Elith et al. 2006; Austin 2007), as have the number of species distribution models (SDM) published in the literature (e.g. Scott et al. 2002). Ten years ago, basic logistic regression (Hosmer and Lemeshow 2000) was the most common analytical tool (Guisan and Zimmermann 2000), whereas ecologists today have at their disposal a much more diverse range of analytical approaches. Much of this is due to the increasing availability of software to implement these methods and the greater computational ability of hardware to run them. It is also due to ecologists discovering and implementing techniques from other scientific disciplines. Ecologists embarking on an analysis may find this range of options daunting and many tools unfamiliar, particularly as many of these approaches are not typically covered in introductory university statistics courses, let alone more advanced ones. This is unfortunate as many of these newer tools may be more useful and appropriate for a particular analysis depending upon its objective, or given the quantity and quality of data available (Guisan et al. 2007; Graham et al. 2008; Wisz et al. 2008). Many of these new tools represent a paradigm shift (Breiman 2001) in how ecologists approach data analysis. In fact, for a number of these approaches, referring to them as new is a misnomer since they have long been used in other fields and only recently have ecologists become increasingly aware of their usefulness (Hochachka et al. 2007; Olden et al. 2008).

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  Vojislav Kecman,et al.  Support Vector Machines – An Introduction , 2005 .

[3]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[4]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[5]  DANA L. THOMAS,et al.  Study Designs and Tests for Comparing Resource Use and Availability II , 2006 .

[6]  Glenn De'ath,et al.  Classification and regression trees: a powerful yet simple technique for the analysis of complex ecological data , 2000 .

[7]  Ravi Kothari,et al.  DECISION TREES FOR CLASSIFICATION: A REVIEW AND SOME NEW RESULTS , 2001 .

[8]  Radu V. Craiu,et al.  Inference Methods for the Conditional Logistic Regression Model with Longitudinal Data , 2008, Biometrical journal. Biometrische Zeitschrift.

[9]  Trevor Hastie,et al.  Generalized linear and generalized additive models in studies of species distributions: setting the scene , 2002 .

[10]  Chris J. Johnson,et al.  Relationship between resource selection, distribution, and abundance: a test with implications to theory and conservation , 2008, Population Ecology.

[11]  Subhash R Lele,et al.  Weighted distributions and estimation of resource selection probability functions. , 2006, Ecology.

[12]  Devin L. Johnson,et al.  A Bayesian Random Effects Discrete-Choice Model for Resource Selection: Population-Level Selection Inference , 2006 .

[13]  Jacob Cohen,et al.  Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. , 1968 .

[14]  D. Jachowski,et al.  Resource selection by black-footed ferrets in relation to the spatial distribution of prairie dogs , 2007 .

[15]  Darryl I MacKenzie,et al.  Sampling design trade-offs in occupancy studies with imperfect detection: examples and software. , 2007, Ecological applications : a publication of the Ecological Society of America.

[16]  David R. Anderson,et al.  Advanced distance sampling , 2004 .

[17]  Bryan F. J. Manly,et al.  Assessing habitat selection when availability changes , 1996 .

[18]  Miroslav Dudík,et al.  Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation , 2008 .

[19]  A. Peterson,et al.  New developments in museum-based informatics and applications in biodiversity analysis. , 2004, Trends in ecology & evolution.

[20]  Mike P. Austin,et al.  Continuum Concept, Ordination Methods, and Niche Theory , 1985 .

[21]  S. Levin The problem of pattern and scale in ecology , 1992 .

[22]  J. Evans,et al.  Gradient modeling of conifer species using random forests , 2009, Landscape Ecology.

[23]  Scott E. Nielsen,et al.  Can models of presence‐absence be used to scale abundance? Two case studies considering extremes in life history , 2005 .

[24]  D. MacKenzie WHAT ARE THE ISSUES WITH PRESENCE–ABSENCE DATA FOR WILDLIFE MANAGERS? , 2005 .

[25]  Hugh P Possingham,et al.  Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. , 2005, Ecology letters.

[26]  L. Ball,et al.  AN OCCUPANCY MODELING APPROACH TO EVALUATING A PALM SPRINGS GROUND SQUIRREL HABITAT MODEL , 2005 .

[27]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[28]  Aaron M. Ellison,et al.  Bayesian inference in ecology , 2004 .

[29]  Mark S. Boyce,et al.  Modelling distribution and abundance with presence‐only data , 2006 .

[30]  C. Dormann Effects of incorporating spatial autocorrelation into the analysis of species distribution data , 2007 .

[31]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[32]  Atle Mysterud,et al.  Density dependent and temporal variability in habitat selection by a large herbivore; an experimental approach , 2009 .

[33]  A. Peterson,et al.  Effects of sample size on the performance of species distribution models , 2008 .

[34]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[35]  D. MacKenzie Modeling the Probability of Resource Use: The Effect of, and Dealing with, Detecting a Species Imperfectly , 2006 .

[36]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[37]  F. Huettmann,et al.  Large-scale effects on the spatial distribution of seabirds in the Northwest Atlantic , 2006, Landscape Ecology.

[38]  Mary Kynn,et al.  Eliciting Expert Knowledge for Bayesian Logistic Regression in Species Habitat Modelling , 2005 .

[39]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[40]  S. Manel,et al.  Evaluating presence-absence models in ecology: the need to account for prevalence , 2001 .

[41]  Cameron L. Aldridge,et al.  Application of random effects to the study of resource selection by animals. , 2006, The Journal of animal ecology.

[42]  T. Hastie,et al.  Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions , 2006 .

[43]  Robert P. Anderson,et al.  Evaluating predictive models of species’ distributions: criteria for selecting optimal models , 2003 .

[44]  J. Michael Scott,et al.  Predicting Species Occurrences: Issues of Accuracy and Scale , 2002 .

[45]  Walter Krämer,et al.  Review of Modern applied statistics with S, 4th ed. by W.N. Venables and B.D. Ripley. Springer-Verlag 2002 , 2003 .

[46]  M. Boyce,et al.  Relating populations to habitats using resource selection functions. , 1999, Trends in ecology & evolution.

[47]  M. Austin Species distribution models and ecological theory: A critical assessment and some possible new approaches , 2007 .

[48]  STEVEN W. BUSKIRK,et al.  Metrics for Studies of Resource Selection , 2006 .

[49]  W. Sousa The Role of Disturbance in Natural Communities , 1984 .

[50]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[51]  D. Padilla,et al.  Ecological neighborhoods: scaling environmental patterns , 1987 .

[52]  G. De’ath,et al.  CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS , 2000 .

[53]  Pravin K. Trivedi,et al.  Regression Analysis of Count Data , 1998 .

[54]  Joshua J. Millspaugh,et al.  Modeling resource selection using polytomous logistic regression and kernel density estimates , 2008, Environmental and Ecological Statistics.

[55]  Joshua J. Millspaugh,et al.  THE APPLICATION OF DISCRETE CHOICE MODELS TO WILDLIFE RESOURCE SELECTION STUDIES , 1999 .

[56]  Ali S. Hadi,et al.  Regression Analysis by Example: Chatterjee/Regression , 2006 .

[57]  S. Ferrier,et al.  Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling , 2004, Biodiversity & Conservation.

[58]  H. Pulliam On the relationship between niche and distribution , 2000 .

[59]  RYAN M. NIELSON,et al.  Winter Habitat Selection of Mule Deer Before and During Development of a Natural Gas Field , 2006 .

[60]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[61]  WESLEY M. HOCHACHKA,et al.  Data-Mining Discovery of Pattern and Process in Ecological Systems , 2007 .

[62]  Jane Elith,et al.  Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines , 2007 .

[63]  Mark S. Boyce,et al.  A quantitative approach to conservation planning: using resource selection functions to map the distribution of mountain caribou at multiple spatial scales , 2004 .

[64]  W. Baker Longterm response of disturbance landscapes to human intervention and global change , 1995, Landscape Ecology.

[65]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[66]  A. Hirzel,et al.  Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status , 2007 .

[67]  N. Crookston,et al.  Empirical Analyses of Plant‐Climate Relationships for the Western United States , 2006, International Journal of Plant Sciences.

[68]  J. Andrew Royle,et al.  ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE , 2002, Ecology.

[69]  Aboul Ella Hassanien,et al.  Applications of Computational Intelligence in Biology: Current Trends and Open Problems , 2008, Applications of Computational Intelligence in Biology.

[70]  Joshua J. Millspaugh,et al.  Radio Tracking and Animal Populations , 2001 .

[71]  Robert A. Gitzen,et al.  Analysis of Animal Space Use and Movements , 2001 .

[72]  B A Wintle,et al.  Modeling species-habitat relationships with spatially autocorrelated observation data. , 2006, Ecological applications : a publication of the Ecological Society of America.

[73]  Tarantola Stefano,et al.  Sensitivity Analysis on Spatial Models: a New Approach , 2006 .

[74]  A. Peterson,et al.  INTERPRETATION OF MODELS OF FUNDAMENTAL ECOLOGICAL NICHES AND SPECIES' DISTRIBUTIONAL AREAS , 2005 .

[75]  Francesca Bona,et al.  Bayesian modelling procedures for the evaluation of changes in wildlife habitat suitability: a case study of roe deer in the Italian Alps. , 2007 .

[76]  B. Manly,et al.  Resource selection by animals: statistical design and analysis for field studies. , 1994 .

[77]  Uygar Özesmi,et al.  An artificial neural network approach to spatial habitat modelling with interspecific interaction , 1999 .

[78]  J. Elder The Generalization Paradox of Ensembles , 2003 .

[79]  Nicholas J. Aebischer,et al.  Compositional Analysis of Habitat Use From Animal Radio-Tracking Data , 1993 .

[80]  Simon Ferrier,et al.  Evaluating the predictive performance of habitat models developed using logistic regression , 2000 .

[81]  D. Lindenmayer,et al.  Modelling the abundance of rare species: statistical models for counts with extra zeros , 1996 .

[82]  J. Elith,et al.  Sensitivity of predictive species distribution models to change in grain size , 2007 .

[83]  A. Peterson Predicting the Geography of Species’ Invasions via Ecological Niche Modeling , 2003, The Quarterly Review of Biology.

[84]  Jane Elith,et al.  Comparing species abundance models , 2006 .

[85]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[86]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[87]  A. Hirzel,et al.  Evaluating the ability of habitat suitability models to predict species presences , 2006 .

[88]  P. White Pattern, process, and natural disturbance in vegetation , 1979, The Botanical Review.

[89]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[90]  Shanshan Wu,et al.  Building statistical models to analyze species distributions. , 2006, Ecological applications : a publication of the Ecological Society of America.

[91]  Jane Elith,et al.  The evaluation strip: A new and robust method for plotting predicted responses from species distribution models , 2005 .

[92]  Robert A. Gitzen,et al.  Analysis of Resource Selection Using Utilization Distributions , 2006 .

[93]  Jorge Soberón Grinnellian and Eltonian niches and geographic distributions of species. , 2007, Ecology letters.

[94]  J. S. Long,et al.  Regression Models for Categorical and Limited Dependent Variables , 1997 .

[95]  R. Real,et al.  AUC: a misleading measure of the performance of predictive distribution models , 2008 .

[96]  A. Townsend Peterson,et al.  Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent , 2007 .

[97]  M. DALE STRICKLAND,et al.  Introduction to the Special Section on Resource Selection , 2006 .

[98]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[99]  Trevor S. Wiens,et al.  Three way k-fold cross-validation of resource selection functions , 2008 .

[100]  Wayne M. Getz,et al.  LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions , 2007, PloS one.

[101]  David R. B. Stockwell,et al.  The GARP modelling system: problems and solutions to automated spatial prediction , 1999, Int. J. Geogr. Inf. Sci..

[102]  R. Leemans,et al.  Comparing global vegetation maps with the Kappa statistic , 1992 .

[103]  James S. Clark,et al.  Why environmental scientists are becoming Bayesians , 2004 .

[104]  Sean C. Mitchell,et al.  How useful is the concept of habitat? – a critique , 2005 .

[105]  Wayne M. Getz,et al.  A local nearest-neighbor convex-hull construction of home ranges and utilization distributions , 2004 .

[106]  S. M. Glenn,et al.  Effects of scale and disturbance on rates of immigration and extinction of species in prairies , 1992 .

[107]  Julian D Olden,et al.  Machine Learning Methods Without Tears: A Primer for Ecologists , 2008, The Quarterly Review of Biology.

[108]  Corinne Martin,et al.  Modelling species distributions using regression quantiles , 2007 .

[109]  Darryl I. MacKenzie,et al.  Designing occupancy studies: general advice and allocating survey effort , 2005 .

[110]  James S. Clark,et al.  Hierarchical Modelling for the Environmental Sciences: Statistical Methods and Applications , 2006 .

[111]  Clément Calenge,et al.  The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals , 2006 .

[112]  J. Blair,et al.  Modulation of diversity by grazing and mowing in native tallgrass prairie , 1998, Science.

[113]  A. Watt,et al.  Pattern and process in the plant community , 1947 .

[114]  David J. Hand,et al.  A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems , 2001, Machine Learning.

[115]  Simon Ferrier,et al.  The practical value of modelling relative abundance of species for regional conservation planning: a case study , 2001 .

[116]  S. Ferrier Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? , 2002, Systematic biology.

[117]  Kevin J Gaston,et al.  Estimating Species Abundance from Occurrence , 2000, The American Naturalist.

[118]  J. Drake,et al.  Modelling ecological niches with support vector machines , 2006 .

[119]  Gerald E. Lang,et al.  Vegetational Patterns and Processes in the Balsam Fir Zone, White Mountains New Hampshire , 1979 .

[120]  TRENT L. McDONALD,et al.  Discrete-Choice Modeling in Wildlife Studies Exemplified by Northern Spotted Owl Nighttime Habitat Selection , 2006 .

[121]  T. Kneib,et al.  BayesX: Analyzing Bayesian Structural Additive Regression Models , 2005 .

[122]  A. Hirzel,et al.  Which is the optimal sampling strategy for habitat suitability modelling , 2002 .

[123]  A. Townsend Peterson,et al.  Rethinking receiver operating characteristic analysis applications in ecological niche modeling , 2008 .

[124]  Stan Boutin,et al.  Relating predation mortality to broad‐scale habitat selection , 2005 .

[125]  M. Boyce,et al.  Evaluating resource selection functions , 2002 .

[126]  D. Chessel,et al.  ECOLOGICAL-NICHE FACTOR ANALYSIS: HOW TO COMPUTE HABITAT-SUITABILITY MAPS WITHOUT ABSENCE DATA? , 2002 .

[127]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[128]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[129]  W. Willett,et al.  Misinterpretation and misuse of the kappa statistic. , 1987, American journal of epidemiology.

[130]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[131]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[132]  David Fletcher,et al.  Modelling skewed data with many zeros: A simple approach combining ordinary and logistic regression , 2005, Environmental and Ecological Statistics.

[133]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[134]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[135]  B. V. Horne,et al.  DENSITY AS A MISLEADING INDICATOR OF HABITAT QUALITY , 1983 .

[136]  Chris J. Johnson,et al.  Resource Selection Functions Based on Use–Availability Data: Theoretical Motivation and Evaluation Methods , 2006 .

[137]  S. Chatterjee,et al.  Regression Analysis by Example , 1979 .

[138]  A. Townsend Peterson,et al.  The influence of spatial errors in species occurrence data used in distribution models , 2007 .

[139]  A. Welsh,et al.  Generalized additive modelling and zero inflated count data , 2002 .

[140]  Falk Huettmann,et al.  A large-scale model for the at-sea distribution and abundance of Marbled Murrelets (Brachyramphus marmoratus) during the breeding season in coastal British Columbia, Canada , 2004 .

[141]  R. Whittaker Communities and Ecosystems , 1975 .

[142]  M. McCarthy Bayesian Methods for Ecology: Frontmatter , 2007 .

[143]  J. Wiens Spatial Scaling in Ecology , 1989 .

[144]  Lipo Wang Support vector machines : theory and applications , 2005 .

[145]  B. Cade,et al.  A gentle introduction to quantile regression for ecologists , 2003 .

[146]  Joshua J. Millspaugh,et al.  RELATING RESOURCES TO A PROBABILISTIC MEASURE OF SPACE USE: FOREST FRAGMENTS AND STELLER'S JAYS , 2004 .

[147]  Douglas H. Johnson THE COMPARISON OF USAGE AND AVAILABILITY MEASUREMENTS FOR EVALUATING RESOURCE PREFERENCE , 1980 .

[148]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[149]  J. Harte,et al.  Maximum entropy and the state-variable approach to macroecology. , 2008, Ecology.

[150]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[151]  John Bell,et al.  Application of classification trees to the habitat preference of upland birds , 1996 .

[152]  Bryan F. J. Manly,et al.  The Use of Discrete-Choice Models for Evaluating Resource Selection , 1998 .

[153]  Falk Huettmann,et al.  Using TreeNet for Identifying Management Thresholds of Mantled Howling Monkeys' Habitat Preferences on Ometepe Island, Nicaragua, on a Tree and Home Range Scale , 2007 .

[154]  B. Worton Kernel methods for estimating the utilization distribution in home-range studies , 1989 .

[155]  S. Cherry,et al.  USE AND INTERPRETATION OF LOGISTIC REGRESSION IN HABITAT-SELECTION STUDIES , 2004 .

[156]  Mark S Boyce,et al.  Lifetime reproductive success and density-dependent, multi-variable resource selection , 2006, Proceedings of the Royal Society B: Biological Sciences.

[157]  Maggi Kelly,et al.  Support vector machines for predicting distribution of Sudden Oak Death in California , 2005 .

[158]  David Paull,et al.  Machine learning of poorly predictable ecological data , 2006 .

[159]  David Afshartous,et al.  Avoiding ‘data snooping’ in multilevel and mixed effects models , 2007 .

[160]  Kevin McGarigal,et al.  Hierarchical, Multi-scale decomposition of species-environment relationships , 2002, Landscape Ecology.

[161]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[162]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[163]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[164]  Michel Loreau,et al.  Limitations of entropy maximization in ecology , 2008 .

[165]  C. Braak Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis , 1986 .

[166]  R. Powell,et al.  An Evaluation of the Accuracy of Kernel Density Estimators for Home Range Analysis , 1996 .

[167]  W. Cooper,et al.  The Climax Forest of Isle Royale, Lake Superior, and Its Development. I , 1913, Botanical Gazette.

[168]  R. Koenker Quantile Regression: Name Index , 2005 .

[169]  J LunnDavid,et al.  WinBUGS A Bayesian modelling framework , 2000 .

[170]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001, Statistical Science.

[171]  B. Cade,et al.  QUANTILE REGRESSION REVEALS HIDDEN BIAS AND UNCERTAINTY IN HABITAT MODELS , 2005 .

[172]  A. Peterson Uses and requirements of ecological niche models and related distributional models , 2006 .

[173]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[174]  M. Kearney,et al.  Habitat, environment and niche: what are we modelling? , 2006 .

[175]  Harold A. Mooney,et al.  Disturbance and Ecosystems , 1983, Ecological Studies.

[176]  David C. Schneider,et al.  Quantitative Ecology: Spatial and Temporal Scaling , 1994 .

[177]  S. Wood,et al.  GAMs with integrated model selection using penalized regression splines and applications to environmental modelling , 2002 .

[178]  R. Swihart,et al.  Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models , 2004 .

[179]  John M. Morton,et al.  Using Random Forests to Provide Predicted Species Distribution Maps as a Metric for Ecological Inventory & Monitoring Programs , 2008, Applications of Computational Intelligence in Biology.

[180]  G. Stenhouse,et al.  Modeling grizzly bear habitats in the Yellowhead ecosystem of Alberta: taking autocorrelation seriously , 2002 .

[181]  Nitesh V. Chawla,et al.  SMOTEBoost: Improving Prediction of the Minority Class in Boosting , 2003, PKDD.

[182]  A. Pitman,et al.  Where will species go? Incorporating new advances in climate modelling into projections of species distributions , 2007 .

[183]  J. Friedman Multivariate adaptive regression splines , 1990 .

[184]  H. Possingham,et al.  IMPROVING PRECISION AND REDUCING BIAS IN BIOLOGICAL SURVEYS: ESTIMATING FALSE‐NEGATIVE ERROR RATES , 2003 .

[185]  T. A. Hanley,et al.  Habitat evaluation: do use/availability data reflect carrying capacity? , 1990 .

[186]  J. Elith,et al.  Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment , 2007 .

[187]  T. Hastie,et al.  Using multivariate adaptive regression splines to predict the distributions of New Zealand ’ s freshwater diadromous fish , 2005 .

[188]  Sophia Rabe-Hesketh,et al.  Generalized latent variable models: multilevel, longitudinal, and structural equation models , 2004 .

[189]  A. Hirzel,et al.  Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture , 2004 .