Adaptive Integral-Based Robust Q-S Synchronization and Parameter Identification of Nonlinear Hyperchaotic Complex Systems

This communique presents the Q-S synchronization of two nonidentical complex nonlinear hyperchaotic systems with unknown parameters. An adaptive controller based on adaptive integral sliding mode control and parameter update laws are designed to realize the synchronization and parameter identification to a given map vector. The aforementioned strategy’s employment demands the transformation of a system into a specific structure containing a nominal part and some unknown terms (later on, these unknown terms will be computed adaptively). An integral sliding mode controller is used to stabilize the error system by designing nominal control accompanied by compensator control. For chattering suppression, a continuous compensator of smooth nature is used instead of conventional control. The stability of the proposed algorithm is established in an impressive way, using Lyapunov criteria. A numerical simulation is performed to illustrate the validity of the proposed synchronization scheme.

[1]  Humaira Afzal,et al.  Synchronization and Antisynchronization Between Two Non-Identical Chua Oscillators via Sliding Mode Control , 2018, IEEE Access.

[2]  Zhenya Yan,et al.  Chaos Q–S synchronization between Rössler system and the new unified chaotic system , 2005 .

[3]  Guo-Hui Li Inverse lag synchronization in chaotic systems , 2009 .

[4]  Diyi Chen,et al.  Anti-synchronization for a class of multi-dimensional autonomous and non-autonomous chaotic systems on the basis of the sliding mode with noise , 2012 .

[5]  David J. Wagg,et al.  Partial Synchronization of nonidentical Chaotic Systems via Adaptive Control, with Applications to Modeling Coupled Nonlinear Systems , 2002, Int. J. Bifurc. Chaos.

[6]  Polina S. Landa,et al.  Synchronizing the chaotic oscillations by external force , 1991 .

[7]  Jiakun Zhao,et al.  Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay , 2012 .

[8]  Guanrong Chen,et al.  A new hyperchaotic Lorenz‐type system: Generation, analysis, and implementation , 2011, Int. J. Circuit Theory Appl..

[9]  Dumitru Baleanu,et al.  Adaptive fractional-order blood glucose regulator based on high-order sliding mode observer. , 2019, IET systems biology.

[10]  F. Dou,et al.  Anti-synchronization of a new hyperchaotic system , 2008 .

[11]  Hao Zhang,et al.  Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system , 2013 .

[12]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[13]  Jun-Wei Wang,et al.  Partial synchronization in coupled chemical chaotic oscillators , 2010, J. Comput. Appl. Math..

[14]  Xiao-Song Yang,et al.  Hyperchaos from two coupled Wien-bridge oscillators , 2008, Int. J. Circuit Theory Appl..

[15]  Dost Muhammad Khan,et al.  Modeling and Inverse Complex Generalized Synchronization and Parameter Identification of Non-Identical Nonlinear Complex Systems Using Adaptive Integral Sliding Mode Control , 2020, IEEE Access.

[16]  Vadim I. Utkin,et al.  Chattering suppression methods in sliding mode control systems , 2007, Annu. Rev. Control..

[17]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[18]  Arkady Pikovsky,et al.  On the interaction of strange attractors , 1984 .

[19]  张昊,et al.  Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system , 2013 .

[20]  Rini Akmeliawati,et al.  Robust Control of Underactuated Systems: Higher Order Integral Sliding Mode Approach , 2016 .

[21]  Sara Dadras,et al.  Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form , 2012 .

[22]  Xingyuan Wang,et al.  A hyperchaos generated from Lorenz system , 2008 .

[23]  Milad Mohadeszadeh,et al.  Robust finite-time synchronization of non-identical fractional-order hyperchaotic systems and its application in secure communication , 2019, IEEE/CAA Journal of Automatica Sinica.

[24]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[25]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.

[26]  Fangfang Zhang,et al.  Lag Synchronization of Complex Lorenz System with Applications to Communication , 2015, Entropy.

[27]  Rafael Martínez-Guerra,et al.  Fractional generalized synchronization in a class of nonlinear fractional order systems , 2014 .

[28]  Xingyuan Wang,et al.  Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems , 2016, PloS one.

[29]  Xingyuan Wang,et al.  PROJECTIVE SYNCHRONIZATION OF DIFFERENT CHAOTIC SYSTEMS WITH NONLINEARITY INPUTS , 2012 .

[30]  Voss,et al.  Anticipating chaotic synchronization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  H. Delavari,et al.  Active sliding observer scheme based fractional chaos synchronization , 2012 .

[32]  Dumitru Baleanu,et al.  Sliding observer for synchronization of fractional order chaotic systems with mismatched parameter , 2012 .

[33]  Jinde Cao,et al.  Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances , 2017, Appl. Math. Comput..

[34]  O. Rössler An equation for hyperchaos , 1979 .

[35]  Qudrat Khan,et al.  A Comparative Experimental Study of Robust Sliding Mode Control Strategies for Underactuated Systems , 2018, IEEE Access.

[36]  Ioannis M. Kyprianidis,et al.  Anti-Phase and Inverse π-Lag Synchronization in Coupled Duffing-Type Circuits , 2011, Int. J. Bifurc. Chaos.