CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion

A highly efficient binary system consisting of polyethylene glycol and an amidine or guanidine superbase was developed for CO2 absorption, leading to the activation of CO2 molecules, and thus direct conversion of the captured CO2 to value-added chemicals or fuels was successfully performed to avoid desorption.

[1]  H. Hall,et al.  Correlation of the Base Strengths of Amines1 , 1957 .

[2]  I. Leito,et al.  Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. , 2005, The Journal of organic chemistry.

[3]  Alfons Baiker,et al.  Ionic liquids and dense carbon dioxide: a beneficial biphasic system for catalysis. , 2011, Chemical reviews.

[4]  B. Han,et al.  Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters , 2008 .

[5]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[6]  Liguo Wang,et al.  Co(acac)3/BMMImCl as a base-free catalyst system for clean syntheses of N,N′-disubstituted ureas from amines and CO2 , 2010 .

[7]  B. F. Goodrich,et al.  Equimolar CO(2) absorption by anion-functionalized ionic liquids. , 2010, Journal of the American Chemical Society.

[8]  B. Han,et al.  Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst , 2008 .

[9]  G. Olah,et al.  Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents , 2010 .

[10]  Peter Styring,et al.  Comparative study of solvent properties for carbon dioxide absorption , 2010 .

[11]  Haoran Li,et al.  Carbon dioxide capture by superbase-derived protic ionic liquids. , 2010, Angewandte Chemie.

[12]  A. Pinhas,et al.  The high yield and regioselective conversion of an unactivated aziridine to an oxazolidinone using carbon dioxide with ammonium iodide as the catalyst , 2010 .

[13]  Chunshan Song,et al.  Nanoporous molecular basket sorbent for NO2 and SO2 capture based on a polyethylene glycol-loaded mesoporous molecular sieve , 2009 .

[14]  P. Jessop,et al.  Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts. , 2003, Journal of the American Chemical Society.

[15]  Asuka Fujii,et al.  Reversible Trap−Release of CO2 by Polymers Bearing DBU and DBN Moieties , 2008 .

[16]  R. Spontak,et al.  Tunable CO2 transport through mixed polyether membranes , 2005 .

[17]  Moetaz I. Attalla,et al.  Simulation of Enthalpy and Capacity of CO2 Absorption by Aqueous Amine Systems , 2008 .

[18]  R. Maggi,et al.  TBD-catalysed solventless synthesis of symmetrically N,N′-substituted ureas from primary amines and diethyl carbonate , 2003 .

[19]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[20]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[21]  J. Richard,et al.  Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion. , 1995, Biochemistry.

[22]  G. Chen,et al.  Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids , 2011 .

[23]  D. Heldebrant,et al.  Synthesis of ammonia borane for hydrogen storage applications , 2008 .

[24]  Qiang Wang,et al.  CO2 capture by solid adsorbents and their applications: current status and new trends , 2011 .

[25]  P. Jessop,et al.  Formanilide and carbanilide from aniline and carbon dioxide , 2003 .

[26]  Charles A. Eckert,et al.  Green chemistry: Reversible nonpolar-to-polar solvent , 2005, Nature.

[27]  B. Han,et al.  CO2 capture by hydrocarbon surfactant liquids. , 2011, Chemical communications.

[28]  C. Dinsmore,et al.  Parallel synthesis of ureas and carbamates from amines and CO2 under mild conditions. , 2010, Organic letters.

[29]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.

[30]  C. Eckert,et al.  Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures , 2008 .

[31]  Jiajian Peng,et al.  Alternatives to phosgene and carbon monoxide: synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. , 2003, Angewandte Chemie.

[32]  Francesco De Sarlo,et al.  1,4-Diazabicyclo[2.2.2]octane (DABCO) as an Efficient Reagent for the Synthesis of Isoxazole Derivatives from Primary Nitro Compounds and Dipolarophiles: The Role of the Base , 2006 .

[33]  Haoran Li,et al.  Tuning the basicity of ionic liquids for equimolar CO2 capture. , 2011, Angewandte Chemie.

[34]  C. Eckert,et al.  The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. , 2005, The Journal of organic chemistry.

[35]  Liang‐Nian He,et al.  Lewis basic ionic liquids-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions , 2010 .

[36]  Haoran Li,et al.  Reversible and robust CO2 capture by equimolar task-specific ionic liquid/superbase mixtures , 2010 .

[37]  S. Dai,et al.  Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems , 2010 .

[38]  Liang‐Nian He,et al.  Carbon dioxide chemistry: Examples and challenges in chemical utilization of carbon dioxide , 2009 .

[39]  P. Jessop,et al.  Low-temperature synthesis of tetraalkylureas from secondary amines and carbon dioxide. , 2002, The Journal of organic chemistry.