Experimental techniques for the calibration of lidar depolarization channels in EARLINET

Abstract. Particle depolarization ratio retrieved from lidar measurements are commonly used for aerosol-typing studies, microphysical inversion, or mass concentration retrievals. The particle depolarization ratio is one of the primary parameters that can differentiate several major aerosol components but only if the measurements are accurate enough. The accuracy related to the retrieval of particle depolarization ratios is the driving factor for assessing and improving the uncertainties of the depolarization products. This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected lidar stations that have implemented depolarization calibration procedures. The calibrated volume and particle depolarization profiles at 532 nm show values that fall within a range that is generally accepted in the literature.

[1]  Benjamin M. Herman,et al.  Determination of aerosol height distributions by lidar , 1972 .

[2]  Dietrich Althausen,et al.  PollyNET: a network of multiwavelength polarization Raman lidars , 2013, Remote Sensing.

[3]  EARLINET observations related to volcanic eruptions (2000-2010) , 2013 .

[4]  Michael A. P. McAuliffe,et al.  Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET , 2012 .

[5]  EARLINET observations related to Saharan Dust events (2000-2010) , 2014 .

[6]  D. Ie,et al.  Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde , 2011 .

[7]  Sarah Theiss,et al.  Elastic Lidar Theory Practice And Analysis Methods , 2016 .

[8]  A. Stohl,et al.  Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajokull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements , 2013 .

[9]  Glenn Rolph,et al.  Real-time Environmental Applications and Display sYstem: READY , 2017, Environ. Model. Softw..

[10]  Doina Nicolae,et al.  Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations , 2013 .

[11]  Benjamin Thomas,et al.  Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix , 2013 .

[12]  V. Freudenthaler,et al.  Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator , 2016 .

[13]  E. García-Caurel,et al.  Advanced Mueller Ellipsometry Instrumentation and Data Analysis , 2013 .

[14]  Detlef Müller,et al.  Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme. , 2009, Applied optics.

[15]  D. Müller,et al.  Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry , 2013 .

[16]  L. Mona,et al.  Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .

[17]  B. Weinzierl,et al.  Aerosol classification by airborne high spectral resolution lidar observations , 2012 .

[18]  Detlef Müller,et al.  Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece , 2012 .

[19]  R. Draxler HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website , 2010 .

[20]  Didier Tanré,et al.  Detection and characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption , 2012 .

[21]  Albert Ansmann,et al.  Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde , 2011 .

[22]  F. Colao,et al.  Calibration method for depolarization lidar measurements , 2009 .

[23]  V. Freudenthaler,et al.  EARLINET: towards an advanced sustainable European aerosol lidar network , 2014 .

[24]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[25]  Albert Ansmann,et al.  The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation , 2016 .

[26]  Chris A. Hostetler,et al.  Calibration Technique for Polarization-Sensitive Lidars , 2006 .

[27]  B. Mayer,et al.  ICAROHS - Inter-Comparison of Aerosol Retrievals and Observational Requirements for Multi-wavelength HSRL Systems , 2010 .

[28]  V. Freudenthaler,et al.  Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2 , 2011 .

[29]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[30]  Jens Reichardt,et al.  Three-signal method for accurate measurements of depolarization ratio with lidar. , 2003, Applied optics.

[31]  Albert Ansmann,et al.  Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements , 2015 .

[32]  U. Panne Laser remote sensing , 1998 .

[33]  R. Chipman,et al.  Interpretation of Mueller matrices based on polar decomposition , 1996 .

[34]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[35]  Vincenzo Cuomo,et al.  CIAO: the CNR-IMAA advanced observatory for atmospheric research , 2010 .

[36]  Volker Freudenthaler,et al.  About the effects of polarising optics on lidar signals and the Δ90 calibration , 2016 .

[37]  R. Engelmann,et al.  Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest , 2009 .

[38]  Takuji Nakamura,et al.  Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. , 2002, Optics express.

[39]  P. Rairoux,et al.  UV-VIS polarization detector for optical remote sensing , 2011 .

[40]  Albert Ansmann,et al.  Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer , 2003 .

[41]  Accuracy of Linear Depolarisation Ratios in Clean Air Ranges Measured with POLIS-6 at 355 and 532 NM , 2016 .

[42]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[43]  Razvigor Ossikovski,et al.  Alternative depolarization criteria for Mueller matrices. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  Josef Gasteiger,et al.  Benefit of depolarization ratio at λ = 1064 nm for the retrieval of the aerosol microphysics from lidar measurements , 2014 .

[45]  L. Alados-Arboledas,et al.  Statistical analysis of aerosol optical properties retrieved by Raman lidar over Southeastern Spain , 2013 .

[46]  Peter W. Webley,et al.  Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska , 2007 .

[47]  Iwona S. Stachlewska,et al.  Temporal variations in optical and microphysical properties of mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland , 2017 .

[48]  Kenneth Sassen,et al.  Polarization in Lidar , 2005 .

[49]  M. Gouhier,et al.  Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France , 2011 .

[50]  L. Alados-Arboledas,et al.  Analysis of lidar depolarization calibration procedure and application to the atmospheric aerosol characterization , 2013 .

[51]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[52]  L. Mona,et al.  Lidar Measurements for Desert Dust Characterization: An Overview , 2012 .

[53]  V. Freudenthaler,et al.  Long-range transport of Saharan dust to northern Europe : The 11-16 October 2001 outbreak observed with EARLINET , 2003 .

[54]  J. Biele,et al.  Polarization Lidar: Correction of instrumental effects. , 2000, Optics express.