Measurement of the strengths of the resonances at 417, 458, 611, 632 and 1222 keV in the 22Ne(p, γ)23Na reaction

The 22Ne(p, γ)23Na reaction is part of the NeNa cycle of hydrogen burning. This cycle plays a key role in the nucleosynthesis of the elements between 20Ne and 27Al in red giant stars, asymptotic giant stars and classical nova explosions. The strengths of the resonances at proton energies above 400 keV are still affected by high uncertainty. In order to reduce this uncertainty, a precision study of some of the most intense resonances between 400 keV and 1250 keV has been performed at the HZDR 3 MV Tandetron. The target, made of 22Ne implanted in a 0.22 mm thick Ta backing, has been characterized using the 1222 keV and 458 keV resonances, well known in literature. Subsequently, the strengths of the resonances at 417, 458, 611, 632 and 1222 keV were determined. Two HPGe detectors equipped with active anti-Compton shielding have been used.