Classification of Binary Constant Weight Codes

A binary code <i>C</i> ⊆ F<sub>2</sub><i>n</i> with minimum distance at least <i>d</i> and codewords of Hamming weight <i>w</i> is called an <i>(n</i>,<i>d</i>,<i>w</i>) constant weight code. The maximum size of an <i>(n</i>,<i>d</i>,<i>w</i>) constant weight code is denoted by <i>A</i>(<i>n</i>,<i>d</i>,<i>w</i>), and codes of this size are said to be optimal. In a computer-aided approach, optimal <i>(n</i>,<i>d</i>,<i>w</i>) constant weight codes are here classified up to equivalence for <i>d</i>=4, <i>n</i> ≤ 12; <i>d</i>=6, <i>n</i> ≤ 14; <i>d</i>=8, <i>n</i> ≤ 17; <i>d</i>=10, <i>n</i> ≤ 20 (with one exception); <i>d</i>=12, <i>n</i> ≤ 23; <i>d</i>=14, <i>n</i> ≤ 26; <i>d</i>=16, <i>n</i> ≤ 28; and <i>d</i>=18, <i>n</i> ≤ 28. Moreover, several new upper bounds on <i>A</i>(<i>n</i>,<i>d</i>,<i>w</i>) are obtained, leading among other things to the exact values <i>A</i>(12,4,5)=80, <i>A</i>(15,6,7)=69, <i>A</i>(18,8,7)=33, <i>A</i>(19,8,7)=52, <i>A</i>(19,8,8)=78, and <i>A</i>(20,8,8)=130 . Since <i>A</i>(15,6,6)=70, this gives the first known example of parameters for which <i>A</i>(<i>n</i>,<i>d</i>,<i>w</i>-1) > <i>A</i>(<i>n</i>,<i>d</i>,<i>w</i>) with <i>w</i> ≤ <i>n</i>/2. A scheme based on double counting is developed for validating the classification results.

[1]  J. Barrau On the combinatory problem of STEINER. , 1908 .

[2]  M. Best,et al.  Binary codes with a minimum distance of four (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[3]  Peter Blundell Gibbons,et al.  Computing techniques for the construction and analysis of block designs. , 1976 .

[4]  Patric R. J. Östergård,et al.  Miscellaneous classification results for 2-designs , 2004, Discret. Math..

[5]  Gordon F. Royle,et al.  Matroids with nine elements , 2008, J. Comb. Theory, Ser. B.

[6]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[7]  Jacobus H. van Lint,et al.  Block Designs with v = 10, k = 5, lambda = 4 , 1977, J. Comb. Theory, Ser. A.

[8]  Patric R. J. Östergård,et al.  Classification Algorithms for Codes and Designs (Algorithms and Computation in Mathematics) , 2005 .

[9]  Alexander Schrijver,et al.  New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.

[10]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[11]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[12]  Vasanti N. Bhat Non-Isomorphic Solutions of Some Balanced Incomplete Block Designs II , 1972, J. Comb. Theory, Ser. A.

[13]  Noboru Ito,et al.  Classification of 3-(24, 12, 5) Designs and 24-Dimensional Hadamard Matrices , 1981, J. Comb. Theory, Ser. A.

[14]  Patric R. J. Östergård,et al.  The Steiner triple systems of order 19 , 2004, Math. Comput..

[15]  Paul Denny,et al.  Case studies and new results in combinatorial enumeration , 2000 .

[16]  M. Hall Hadamard matrices of order 20 , 1965 .

[17]  Patric R. J. Östergård,et al.  The Perfect Binary One-Error-Correcting Codes of Length $15$: Part I—Classification , 2008, IEEE Transactions on Information Theory.

[18]  M. R. Best A(11,4,4) = 35 or some new optimal constant weight codes , 1977 .

[19]  M. R. Best,et al.  Binary codes with minimum distance four , 1978 .

[20]  D. R. Breach The 2-(9, 4, 3) and 3-(10, 5, 3) Designs , 1979, J. Comb. Theory, Ser. A.

[21]  P. Kaski,et al.  Classification Algorithms for Codes and Designs , 2005 .

[22]  Hiroshi Kimura,et al.  New Hadamard matrix of order 24 , 1989, Graphs Comb..

[23]  S. S. Shrikhande,et al.  Non-isomorphic solutions of some balanced incomplete block designs. I , 1970 .

[24]  Alexander Vardy,et al.  Upper bounds for constant-weight codes , 2000, IEEE Trans. Inf. Theory.

[25]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[26]  Patric R. J. Östergård,et al.  There exists no Steiner system S(4, 5, 17) , 2008, J. Comb. Theory, Ser. A.

[27]  N. J. A. Sloane,et al.  Bounds for binary codes of length less than 25 , 1978, IEEE Trans. Inf. Theory.

[28]  N. J. A. Sloane,et al.  Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.

[29]  Sampo Niskanen,et al.  Cliquer user's guide, version 1.0 , 2003 .

[30]  A. J. Petrenjuk On the constructive enumeration of packings and coverings of index one , 1989, Discret. Math..

[31]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[32]  Derek H. Smith,et al.  A New Table of Constant Weight Codes of Length Greater than 28 , 2006, Electron. J. Comb..

[33]  A. Rosa,et al.  2-( v , k , λ) Designs of Small Order , 2006 .

[34]  Andries E. Brouwer,et al.  Block designs , 1996 .