Speeding Up Particle Trajectory Simulations under Moving Force Fields using GPUs

In this paper, we introduce a GPU-based framework for simulating particle trajectories under both static and dynamic force fields. By exploiting the highly parallel nature of the problem and making efficient use of the available hardware, our simulator exhibits a significant speedup over its CPUbased analog. We apply our framework to a specific experimental simulation: the computation of trapping probabilities associated with micron-sized silica beads in optical trapping workbenches. When evaluating large numbers of trajectories (4096), we see approximately a 356 times speedup of the GPU-based simulator over its CPU-based counterpart.

[1]  William Et.Al Hines,et al.  Probability and Statistics in Engineering , 2003 .

[2]  Pedro V. Sander,et al.  Explicit Early-Z Culling for Efficient Fluid Flow Simulation and Rendering , 2004 .

[3]  Satyandra K. Gupta,et al.  Stochastic Simulations With Graphics Hardware: Characterization of Accuracy and Performance , 2010, J. Comput. Inf. Sci. Eng..

[4]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[5]  Nicolas Le Novère,et al.  Brownian diffusion of AMPA receptors is sufficient to explain fast onset of LTP , 2010, BMC Systems Biology.

[6]  Takashi Tanaka,et al.  Computer generated holography using a graphics processing unit. , 2006, Optics express.

[7]  A. Arnold,et al.  Harvesting graphics power for MD simulations , 2007, 0709.3225.

[8]  Naga K. Govindaraju,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007 .

[9]  Hans-Peter Seidel,et al.  Applications of pixel textures in visualization and realistic image synthesis , 1999, SI3D.

[10]  Min Wu,et al.  Using Graphics Boards to Compute Holograms , 2006, Comput. Sci. Eng..

[11]  Amitabh Varshney,et al.  Parallel, stochastic measurement of molecular surface area. , 2008, Journal of molecular graphics & modelling.

[12]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[13]  L. Verlet Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions , 1968 .

[14]  Liu You,et al.  Real-Time 3D Fluid Simulation on GPU with Complex Obstacles , 2006 .

[15]  Mitchel Weissbluth,et al.  Photon-Atom Interactions , 1989 .

[16]  Daniel Ratner,et al.  Nanotechnology: A Gentle Introduction to the Next Big Idea , 2002 .

[17]  Bharat Bhushan Springer Handbook of Nanotechnology , 2007 .

[18]  Wolfgang Osten,et al.  Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm , 2008, SPIE OPTO.

[19]  Michael A. Wilson,et al.  Nanotechnology: Basic Science and Emerging Technologies , 2002 .

[20]  Satyandra K. Gupta,et al.  Generating Simplified Trapping Probability Models From Simulation of Optical Tweezers System , 2009, J. Comput. Inf. Sci. Eng..

[21]  Gordon Erlebacher,et al.  Lagrangian-Eulerian advection for unsteady flow visualization , 2001, Proceedings Visualization, 2001. VIS '01..

[22]  P. Mazur On the theory of brownian motion , 1959 .

[23]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[24]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[25]  R. Mazo On the theory of brownian motion , 1973 .

[26]  Mark J. Harris Fast fluid dynamics simulation on the GPU , 2005, SIGGRAPH Courses.

[27]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[28]  Satyandra K. Gupta,et al.  Algorithms for Extraction of Nanowire Lengths and Positions From Optical Section Microscopy Image Sequence , 2009, J. Comput. Inf. Sci. Eng..

[29]  Thomas Ertl,et al.  Hardware-Accelerated Visualization of Time-Varying 2D and 3D Vector Fields by Texture Advection via Programmable Per-Pixel Operations , 2001, VMV.

[30]  Arie E. Kaufman,et al.  Lattice-based flow field modeling , 2004, IEEE Transactions on Visualization and Computer Graphics.

[31]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[32]  Wolfgang Osten,et al.  Fast hologram computation and aberration control for holographic tweezers , 2005, SPIE Optics + Photonics.

[33]  M W Berns,et al.  Parametric study of the forces on microspheres held by optical tweezers. , 1994, Applied optics.

[34]  Paul Grassia,et al.  Dissipation, fluctuations and conservation laws , 2001 .

[35]  Chad A. Mirkin,et al.  Nanobiotechnology :concepts, applications and perspectives , 2005 .

[36]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[37]  Aristides A. G. Requicha,et al.  CAD/CAM for nanoscale self-assembly , 2006, IEEE Computer Graphics and Applications.

[38]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[39]  Arie E. Kaufman,et al.  Implementing lattice Boltzmann computation on graphics hardware , 2003, The Visual Computer.

[40]  Jostein R. Natvig,et al.  Solving the Euler Equations on Graphics Processing Units , 2006, International Conference on Computational Science.

[41]  Satyandra K. Gupta,et al.  Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations , 2010, IEEE Transactions on Automation Science and Engineering.

[42]  J. Krüger,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, ACM Trans. Graph..