Quantum computation with classical light: The Deutsch Algorithm
暂无分享,去创建一个
Andrew Forbes | Raul I. Hernandez-Aranda | Benjamin Perez-Garcia | Melanie McLaren | Sandeep K. Goyal | Thomas Konrad | S. Goyal | A. Forbes | B. Perez-Garcia | T. Konrad | M. Mclaren | R. Hernández-Aranda | Benjamin Perez-Garcia | Raul I. Hernández-Aranda | S. Goyal
[1] N. Ranganathan,et al. Circuit for Reversible Quantum Multiplier Based on Binary Tree Optimizing Ancilla and Garbage Bits , 2014, 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems.
[2] J. Goodman. Introduction to Fourier optics , 1969 .
[3] Eli Biham,et al. Quantum computing without entanglement , 2003, Theor. Comput. Sci..
[4] Joseph Shamir,et al. Fourier optics described by operator algebra , 1980 .
[5] A. Aiello,et al. Goos–Hänchen and Imbert–Fedorov shifts from a quantum-mechanical perspective , 2013, 1307.6057.
[6] Miles J. Padgett,et al. IV The Orbital Angular Momentum of Light , 1999 .
[7] G. Leuchs,et al. Quantum−like nonseparable structures in optical beams , 2014, 1409.0213.
[8] G. Agarwal,et al. Implementing Deutsch-Jozsa algorithm using light shifts and atomic ensembles , 2005 .
[9] Andrew Forbes,et al. Implementation of multidimensional quantum walks using linear optics and classical light , 2015, 1506.08703.
[10] O. Mangold,et al. NMR tomography of the three-qubit Deutsch-Jozsa algorithm (10 pages) , 2004 .
[11] Jens Siewert,et al. Implementation of the Four-Bit Deutsch-Jozsa Algorithm with Josephson Charge Qubits , 2002 .
[12] Wang Hong-Fu,et al. Implementation of n-qubit Deutsch–Jozsa algorithm using resonant interaction in cavity QED , 2008 .
[13] G. Molina-Terriza,et al. How a Dove prism transforms the orbital angular momentum of a light beam. , 2006, Optics express.
[14] M. Padgett,et al. Orbital angular momentum: origins, behavior and applications , 2011 .
[15] 今井 浩. 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .
[16] N. B. Freeman. An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.
[17] S. Ramelow,et al. Deutsch-Jozsa algorithm using triggered single photons from a single quantum dot , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.
[18] R. Feynman. Simulating physics with computers , 1999 .
[19] Andrew Forbes,et al. Azimuthal decomposition with digital holograms. , 2012, Optics express.
[20] John Dauns,et al. COHERENCE , 2002 .
[21] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[22] Shi-Biao Zheng. Scheme for implementing the Deutsch-Jozsa algorithm in cavity QED , 2004 .
[23] Daniela Dragoman,et al. n-step optical simulation of the n-qubit state: Applications in optical computing , 2002 .
[24] F. Schmidt-Kaler,et al. Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.
[25] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[26] T. Konrad,et al. From Classical to Quantum Optics , 2014 .
[27] E. Sudarshan,et al. Realization of First Order Optical Systems Using Thin Lenses , 1983 .
[28] Lin Xiu,et al. Implementing the Deutsch–Jozsa algorithm by using Schrödinger cat states in cavity QED , 2006 .
[29] K. Kim,et al. Deutsch-Jozsa algorithm as a test of quantum computation , 1998, quant-ph/9807012.
[30] Stephen P. Walborn,et al. Implementing the Deutsch algorithm with polarization and transverse spatial modes , 2005 .
[31] Shou Zhang,et al. Implementing Deutsch-Jozsa Algorithm with Superconducting Quantum Interference Devices in Cavity QED , 2009 .
[32] Richard J. Lipton,et al. Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.
[33] R. Jozsa,et al. On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[34] J. Audretsch. Entangled Systems: New Directions in Quantum Physics , 2007 .
[35] Andreas Quirrenbach,et al. Optical Interferometry , 2001 .
[36] C. Borges,et al. Bell-like inequality for the spin-orbit separability of a laser beam , 2009, 0911.2440.
[37] L. Diósi. A Short Course in Quantum Information Theory: An Approach From Theoretical Physics , 2006 .
[38] R. Spreeuw. A Classical Analogy of Entanglement , 1998 .
[39] J. P. Woerdman,et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[40] Ming Yang,et al. IMPLEMENTING DEUTSCH–JOZSA ALGORITHM USING SUPERCONDUCTING QUBIT NETWORK , 2008 .
[41] Hong Gao,et al. Demonstration of Deutsch's algorithm on a stable linear optical quantum computer , 2010 .
[42] D. Deutsch,et al. Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[43] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[44] E. Farhi,et al. Quantum computation and decision trees , 1997, quant-ph/9706062.
[45] Jaehyun Kim,et al. Implementation of the refined Deutsch-Jozsa algorithm on a three-bit NMR quantum computer , 1999, quant-ph/9910015.
[46] Ruifeng Liu,et al. Implementing the Deutsch's algorithm with spin-orbital angular momentum of photon without interferometer , 2012, 1207.5505.
[47] J. A. Jones,et al. Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.
[48] Claudio Iemmi,et al. Optical simulation of quantum algorithms using programmable liquid-crystal displays , 2004 .
[49] M. Feng,et al. Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. , 2010, Physical review letters.
[50] Robert J. C. Spreeuw. Classical wave-optics analogy of quantum information processing , 2001 .
[51] A. Luis. Coherence, polarization, and entanglement for classical light fields , 2009 .
[52] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[53] H. S. Allen. The Quantum Theory , 1928, Nature.
[54] Andrew Forbes,et al. Implementing quantum walks using orbital angular momentum of classical light. , 2012, Physical review letters.
[55] Gilles Brassard,et al. Oracle Quantum Computing , 1994 .
[56] Double-slit implementation of the minimal Deutsch algorithm , 2012, 1209.1749.
[57] F. Gori,et al. Nonquantum entanglement resolves a basic issue in polarization optics. , 2010, Physical review letters.
[58] T. S. Mahesh,et al. Implementing logic gates and the Deutsch-Jozsa quantum algorithm by two-dimensional NMR using spin- and transition-selective pulses. , 2001, Journal of magnetic resonance.
[59] Biqin Dong,et al. Quantitative Imaging of Rapidly Decaying Evanescent Fields Using Plasmonic Near-Field Scanning Optical Microscopy , 2013, Scientific Reports.
[60] I. Chuang,et al. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.
[61] J. Pendry,et al. Negative refraction makes a perfect lens , 2000, Physical review letters.
[62] Michael V. Berry,et al. Paraxial beams of spinning light , 1998, Other Conferences.
[63] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[64] Arvind,et al. Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR , 1999, quant-ph/9906027.
[65] Dietrich Marcuse,et al. Formal Quantum Theory of Light Rays , 1969 .
[66] David P. DiVincenzo,et al. Quantum Computing: A Short Course from Theory to Experiment , 2004 .
[67] David Stoler,et al. Operator methods in physical optics , 1981 .
[68] C. Piermarocchi,et al. Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot , 2004, cond-mat/0401226.
[69] G. Leuchs,et al. Classical entanglement in polarization metrology , 2014, 1401.1543.