Quantum computation with classical light: The Deutsch Algorithm

Abstract We present an implementation of the Deutsch Algorithm using linear optical elements and laser light. We encoded two quantum bits in form of superpositions of electromagnetic fields in two degrees of freedom of the beam: its polarisation and orbital angular momentum. Our approach, based on a Sagnac interferometer, offers outstanding stability and demonstrates that optical quantum computation is possible using classical states of light.

[1]  N. Ranganathan,et al.  Circuit for Reversible Quantum Multiplier Based on Binary Tree Optimizing Ancilla and Garbage Bits , 2014, 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems.

[2]  J. Goodman Introduction to Fourier optics , 1969 .

[3]  Eli Biham,et al.  Quantum computing without entanglement , 2003, Theor. Comput. Sci..

[4]  Joseph Shamir,et al.  Fourier optics described by operator algebra , 1980 .

[5]  A. Aiello,et al.  Goos–Hänchen and Imbert–Fedorov shifts from a quantum-mechanical perspective , 2013, 1307.6057.

[6]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[7]  G. Leuchs,et al.  Quantum−like nonseparable structures in optical beams , 2014, 1409.0213.

[8]  G. Agarwal,et al.  Implementing Deutsch-Jozsa algorithm using light shifts and atomic ensembles , 2005 .

[9]  Andrew Forbes,et al.  Implementation of multidimensional quantum walks using linear optics and classical light , 2015, 1506.08703.

[10]  O. Mangold,et al.  NMR tomography of the three-qubit Deutsch-Jozsa algorithm (10 pages) , 2004 .

[11]  Jens Siewert,et al.  Implementation of the Four-Bit Deutsch-Jozsa Algorithm with Josephson Charge Qubits , 2002 .

[12]  Wang Hong-Fu,et al.  Implementation of n-qubit Deutsch–Jozsa algorithm using resonant interaction in cavity QED , 2008 .

[13]  G. Molina-Terriza,et al.  How a Dove prism transforms the orbital angular momentum of a light beam. , 2006, Optics express.

[14]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[15]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[16]  N. B. Freeman An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.

[17]  S. Ramelow,et al.  Deutsch-Jozsa algorithm using triggered single photons from a single quantum dot , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[18]  R. Feynman Simulating physics with computers , 1999 .

[19]  Andrew Forbes,et al.  Azimuthal decomposition with digital holograms. , 2012, Optics express.

[20]  John Dauns,et al.  COHERENCE , 2002 .

[21]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[22]  Shi-Biao Zheng Scheme for implementing the Deutsch-Jozsa algorithm in cavity QED , 2004 .

[23]  Daniela Dragoman,et al.  n-step optical simulation of the n-qubit state: Applications in optical computing , 2002 .

[24]  F. Schmidt-Kaler,et al.  Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.

[25]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  T. Konrad,et al.  From Classical to Quantum Optics , 2014 .

[27]  E. Sudarshan,et al.  Realization of First Order Optical Systems Using Thin Lenses , 1983 .

[28]  Lin Xiu,et al.  Implementing the Deutsch–Jozsa algorithm by using Schrödinger cat states in cavity QED , 2006 .

[29]  K. Kim,et al.  Deutsch-Jozsa algorithm as a test of quantum computation , 1998, quant-ph/9807012.

[30]  Stephen P. Walborn,et al.  Implementing the Deutsch algorithm with polarization and transverse spatial modes , 2005 .

[31]  Shou Zhang,et al.  Implementing Deutsch-Jozsa Algorithm with Superconducting Quantum Interference Devices in Cavity QED , 2009 .

[32]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[33]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  J. Audretsch Entangled Systems: New Directions in Quantum Physics , 2007 .

[35]  Andreas Quirrenbach,et al.  Optical Interferometry , 2001 .

[36]  C. Borges,et al.  Bell-like inequality for the spin-orbit separability of a laser beam , 2009, 0911.2440.

[37]  L. Diósi A Short Course in Quantum Information Theory: An Approach From Theoretical Physics , 2006 .

[38]  R. Spreeuw A Classical Analogy of Entanglement , 1998 .

[39]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  Ming Yang,et al.  IMPLEMENTING DEUTSCH–JOZSA ALGORITHM USING SUPERCONDUCTING QUBIT NETWORK , 2008 .

[41]  Hong Gao,et al.  Demonstration of Deutsch's algorithm on a stable linear optical quantum computer , 2010 .

[42]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[43]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[44]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[45]  Jaehyun Kim,et al.  Implementation of the refined Deutsch-Jozsa algorithm on a three-bit NMR quantum computer , 1999, quant-ph/9910015.

[46]  Ruifeng Liu,et al.  Implementing the Deutsch's algorithm with spin-orbital angular momentum of photon without interferometer , 2012, 1207.5505.

[47]  J. A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[48]  Claudio Iemmi,et al.  Optical simulation of quantum algorithms using programmable liquid-crystal displays , 2004 .

[49]  M. Feng,et al.  Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. , 2010, Physical review letters.

[50]  Robert J. C. Spreeuw Classical wave-optics analogy of quantum information processing , 2001 .

[51]  A. Luis Coherence, polarization, and entanglement for classical light fields , 2009 .

[52]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[53]  H. S. Allen The Quantum Theory , 1928, Nature.

[54]  Andrew Forbes,et al.  Implementing quantum walks using orbital angular momentum of classical light. , 2012, Physical review letters.

[55]  Gilles Brassard,et al.  Oracle Quantum Computing , 1994 .

[56]  Double-slit implementation of the minimal Deutsch algorithm , 2012, 1209.1749.

[57]  F. Gori,et al.  Nonquantum entanglement resolves a basic issue in polarization optics. , 2010, Physical review letters.

[58]  T. S. Mahesh,et al.  Implementing logic gates and the Deutsch-Jozsa quantum algorithm by two-dimensional NMR using spin- and transition-selective pulses. , 2001, Journal of magnetic resonance.

[59]  Biqin Dong,et al.  Quantitative Imaging of Rapidly Decaying Evanescent Fields Using Plasmonic Near-Field Scanning Optical Microscopy , 2013, Scientific Reports.

[60]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[61]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[62]  Michael V. Berry,et al.  Paraxial beams of spinning light , 1998, Other Conferences.

[63]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[64]  Arvind,et al.  Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR , 1999, quant-ph/9906027.

[65]  Dietrich Marcuse,et al.  Formal Quantum Theory of Light Rays , 1969 .

[66]  David P. DiVincenzo,et al.  Quantum Computing: A Short Course from Theory to Experiment , 2004 .

[67]  David Stoler,et al.  Operator methods in physical optics , 1981 .

[68]  C. Piermarocchi,et al.  Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot , 2004, cond-mat/0401226.

[69]  G. Leuchs,et al.  Classical entanglement in polarization metrology , 2014, 1401.1543.