Functional genomics in Drosophila models of human disease.

It is occasionally observed that common sporadic diseases have rare familial counterparts in which mutations at a single locus result in a similar disorder exhibiting simple Mendelian inheritance. Such an observation is often sufficient justification for the creation of a disease model in the fly. Whether the system is based on the over-expression of a toxic variant of a human protein or requires the loss of function of an orthologous fly gene, the consequent phenotypes can be used to understand pathogenesis through the discovery of genetic modifiers. Such genetic screening can be completed rapidly in the fly and in this review we outline how libraries of mutants are generated and how consequent changes in disease-related phenotypes are assessed. The bioinformatic approaches to processing the copious amounts of data so generated are also presented. The next phase of fly modelling will tackle the challenges of complex diseases in which many genes are associated with risk in the human. There is growing interest in the use of interactomics and epigenetics to provide proteome- and genome-scale descriptions of the regulatory dysfunction that results in disease.

[1]  N. Perrimon,et al.  Functional Genomic Analysis of the Wnt-Wingless Signaling Pathway , 2005, Science.

[2]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[3]  Clemens R Scherzer,et al.  Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson's disease. , 2003, Human molecular genetics.

[4]  Gos Micklem,et al.  Supporting Online Material Materials and Methods Figs. S1 to S50 Tables S1 to S18 References Identification of Functional Elements and Regulatory Circuits by Drosophila Modencode , 2022 .

[5]  M. Tanouye,et al.  Seizure Suppression by Gain-of-Function escargot Mutations , 2005, Genetics.

[6]  N. Nukina,et al.  RNAi Screening in Drosophila Cells Identifies New Modifiers of Mutant Huntingtin Aggregation , 2009, PloS one.

[7]  Richard M. Page,et al.  Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease , 2005, Neuroscience.

[8]  Pernille R0RTH A modular misexpression screen in Drosophila detecting tissue-specific phenotypes , 2005 .

[9]  T. Aigaki,et al.  The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. , 1999, Genetics.

[10]  Jianpeng Ma,et al.  Genome-wide polycomb target gene prediction in Drosophila melanogaster , 2012, Nucleic acids research.

[11]  S. Benzer,et al.  Genetic suppression of polyglutamine toxicity in Drosophila. , 2000, Science.

[12]  D. L. van de Hoef,et al.  Identifying genes that interact with Drosophila presenilin and amyloid precursor protein , 2009, Genesis.

[13]  Y. Fuyama,et al.  Application of the gene search system to screen for longevity genes in Drosophila , 2004, Biogerontology.

[14]  Annette Schenck,et al.  Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a , 2011, PLoS biology.

[15]  G. Rubin,et al.  The BDGP Gene Disruption Project , 2004, Genetics.

[16]  Irina M. Armean,et al.  In Vivo Analysis of Proteomes and Interactomes Using Parallel Affinity Capture (iPAC) Coupled to Mass Spectrometry* , 2011, Molecular & Cellular Proteomics.

[17]  B. Nelson,et al.  Isolation of gene sets affected specifically by polyglutamine expression: implication of the TOR signaling pathway in neurodegeneration , 2005, Cell Death and Differentiation.

[18]  I. Hariharan,et al.  A Buoyancy-Based Screen of Drosophila Larvae for Fat-Storage Mutants Reveals a Role for Sir2 in Coupling Fat Storage to Nutrient Availability , 2010, PLoS genetics.

[19]  Michael Boutros,et al.  The art and design of genetic screens: RNA interference , 2008, Nature Reviews Genetics.

[20]  Pengyu Hong,et al.  High-Content Chemical and RNAi Screens for Suppressors of Neurotoxicity in a Huntington's Disease Model , 2011, PloS one.

[21]  Kai J. Kohlhoff,et al.  Detection of early locomotor abnormalities in a Drosophila model of Alzheimer's disease , 2011, Journal of Neuroscience Methods.

[22]  I. Hariharan,et al.  An overexpression screen in Drosophila for genes that restrict growth or cell-cycle progression in the developing eye. , 2002, Genetics.

[23]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[24]  S. Russell,et al.  Biases in Drosophila melanogaster protein trap screens , 2009, BMC Genomics.

[25]  Nick C Fox,et al.  Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease , 2011, Nature Genetics.

[26]  Adam A. Friedman,et al.  A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling , 2006, Nature.

[27]  Nele A. Haelterman,et al.  MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes , 2011, Nature Methods.

[28]  A. Spradling,et al.  The Drosophila Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities , 2011, Genetics.

[29]  M. Gerstein,et al.  Unlocking the secrets of the genome , 2009, Nature.

[30]  Karin Aumayr,et al.  Drosophila Genome-wide Obesity Screen Reveals Hedgehog as a Determinant of Brown versus White Adipose Cell Fate , 2010, Cell.

[31]  J. Shulman,et al.  Genetic modifiers of tauopathy in Drosophila. , 2003, Genetics.

[32]  Y. Rao Genome-wide screen for modifiers of Parkinson?s disease genes in Drosophila , 2013 .

[33]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[34]  J. Dow,et al.  Using FlyAtlas to identify better Drosophila melanogaster models of human disease , 2007, Nature Genetics.

[35]  D. M. Glover,et al.  Genome-wide survey of protein kinases required for cell cycle progression , 2004, Nature.

[36]  Constance Richter,et al.  The tumor suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements , 2011, Nature Cell Biology.

[37]  John S Mattick,et al.  Identification of novel non-coding RNAs using profiles of short sequence reads from next generation sequencing data , 2010, BMC Genomics.

[38]  C. Nichols,et al.  Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery , 2011, Pharmacological Reviews.

[39]  Andrei L. Turinsky,et al.  DAnCER: Disease-Annotated Chromatin Epigenetics Resource , 2010, Nucleic Acids Res..

[40]  Lawrence Lum,et al.  Prevalence of off-target effects in Drosophila RNA interference screens , 2006, Nature.

[41]  D. Sattelle,et al.  Alzheimer's disease: insights from Drosophila melanogaster models , 2010, Trends in biochemical sciences.

[42]  Bonnie Berger,et al.  Proteomic and Functional Genomic Landscape of Receptor Tyrosine Kinase and Ras to Extracellular Signal–Regulated Kinase Signaling , 2011, Science Signaling.

[43]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[44]  M. Boutros,et al.  A Large-Scale RNAi Screen Identifies Deaf1 as a Regulator of Innate Immune Responses in Drosophila , 2009, Journal of Innate Immunity.

[45]  Daniel St Johnston,et al.  The art and design of genetic screens: Drosophila melanogaster , 2002, Nature Reviews Genetics.

[46]  M. Konsolaki,et al.  The Toll→NFκB Signaling Pathway Mediates the Neuropathological Effects of the Human Alzheimer's Aβ42 Polypeptide in Drosophila , 2008, PloS one.

[47]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[48]  David Bilder,et al.  A tumor suppressive activity of Drosophila Polycomb genes mediated by JAK/STAT signaling , 2009, Nature Genetics.

[49]  R. Richards,et al.  Perturbation of the Akt/Gsk3-β signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs , 2011, Human molecular genetics.

[50]  Andreas Hess,et al.  A Genome-wide Drosophila Screen for Heat Nociception Identifies α2δ3 as an Evolutionarily Conserved Pain Gene , 2010, Cell.

[51]  Renato Paro,et al.  A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. , 2010, Developmental cell.

[52]  A. von Haeseler,et al.  Genome-Wide RNAi Screen Identifies Genes Involved in Intestinal Pathogenic Bacterial Infection , 2009, Science.

[53]  Jim Thurmond,et al.  FlyBase 101 – the basics of navigating FlyBase , 2011, Nucleic Acids Res..

[54]  D. Geschwind,et al.  A Genomic Screen for Modifiers of Tauopathy Identifies Puromycin-Sensitive Aminopeptidase as an Inhibitor of Tau-Induced Neurodegeneration , 2006, Neuron.

[55]  Robert Hider,et al.  Fenton chemistry and oxidative stress mediate the toxicity of the β-amyloid peptide in a Drosophila model of Alzheimer’s disease , 2009, The European journal of neuroscience.

[56]  R. Miledi,et al.  Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Hugo J. Bellen,et al.  P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster , 2006, Science.

[58]  Derek J Van Booven,et al.  Deep mRNA Sequencing for In Vivo Functional Analysis of Cardiac Transcriptional Regulators: Application to G&agr;q , 2010, Circulation research.

[59]  J. Newberg,et al.  Identification of EMS-Induced Mutations in Drosophila melanogaster by Whole-Genome Sequencing , 2009, Genetics.

[60]  J. Robert Manak,et al.  Stability and Dynamics of Polycomb Target Sites in Drosophila Development , 2008, PLoS genetics.

[61]  N. Perrimon,et al.  Genome-Wide RNAi Analysis of Growth and Viability in Drosophila Cells , 2004, Science.

[62]  Christian E. V. Storm,et al.  Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. , 2001, Journal of molecular biology.

[63]  N. Perrimon,et al.  Drosophila genome-wide RNAi screens: are they delivering the promise? , 2006, Cold Spring Harbor symposia on quantitative biology.

[64]  Norbert Perrimon,et al.  Genome-Wide RNAi Screen for Host Factors Required for Intracellular Bacterial Infection , 2005, Science.

[65]  D. Curtis,et al.  Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome , 2004, Nature Genetics.

[66]  S. Russell,et al.  Transposable elements as tools for genomics and genetics in Drosophila. , 2003, Briefings in functional genomics & proteomics.

[67]  A. Bertolin,et al.  Drosophila Genome-Wide RNAi Screen Identifies Multiple Regulators of HIF–Dependent Transcription in Hypoxia , 2010, PLoS genetics.

[68]  Thomas Horn,et al.  GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update , 2009, Nucleic Acids Res..

[69]  E. Sonnhammer,et al.  OrthoDisease: A database of human disease orthologs , 2004, Human mutation.

[70]  Stephen Guest,et al.  DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila , 2010, Nucleic Acids Res..

[71]  M. Ashburner,et al.  The DrosDel Collection , 2004, Genetics.

[72]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[73]  Julian Mintseris,et al.  A Protein Complex Network of Drosophila melanogaster , 2011, Cell.

[74]  Jing Wang,et al.  Function-informed transcriptome analysis of Drosophila renal tubule , 2004, Genome Biology.

[75]  M. Tanouye,et al.  Mutations in the K+/Cl− Cotransporter Gene kazachoc (kcc) Increase Seizure Susceptibility in Drosophila , 2006, The Journal of Neuroscience.

[76]  J. B. Duffy,et al.  GAL4 system in drosophila: A fly geneticist's swiss army knife , 2002, Genesis.

[77]  Ricky W Johnstone,et al.  AKT Promotes rRNA Synthesis and Cooperates with c-MYC to Stimulate Ribosome Biogenesis in Cancer , 2011, Science Signaling.

[78]  M. Tanouye,et al.  The Drosophila slamdance gene: a mutation in an aminopeptidase can cause seizure, paralysis and neuronal failure. , 2002, Genetics.

[79]  W. Engels,et al.  A stable genomic source of P element transposase in Drosophila melanogaster. , 1988, Genetics.

[80]  H. Vogel,et al.  Drosophila models of neurodegenerative diseases. , 2009, Annual review of pathology.

[81]  M Gribskov,et al.  A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. , 2001, Genome research.

[82]  Kiyoko F. Aoki-Kinoshita,et al.  Identification of Genes Required for Neural-Specific Glycosylation Using Functional Genomics , 2010, PLoS genetics.

[83]  Nancy M Bonini,et al.  Genome-Wide Screen for Modifiers of Ataxin-3 Neurodegeneration in Drosophila , 2007, PLoS genetics.

[84]  J. Olson,et al.  Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration , 2007, PLoS genetics.

[85]  K. Norga,et al.  Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. , 2004, Genetics.

[86]  M. R. Adams,et al.  Comparative genomics of the eukaryotes. , 2000, Science.

[87]  Peter J. Bickel,et al.  The Developmental Transcriptome of Drosophila melanogaster , 2010, Nature.

[88]  Thomas Horn,et al.  GenomeRNAi: a database for cell-based RNAi phenotypes , 2006, Nucleic Acids Res..