On the Chemistry and Evolution of the Pioneer Organism

The theory of a chemo‐autotrophic origin of life in a volcanic Iron‐Sulfur World postulates the emergence of a pioneer organism within a flow of volcanic exhalations. The pioneer organism is characterized by a composite structure with an inorganic substructure and an organic superstructure. Within the surfaces of the inorganic substructure, iron, cobalt, nickel, and other transition‐metal centers with sulfido, carbonyl, cyano, and other ligands are catalytically active, and promote the growth of the organic superstructure through carbon fixation, driven by the reducing potential of the volcanic exhalations. This pioneer organism is reproductive by an autocatalytic feedback effect, whereby some organic products serve as ligands for activating the catalytic metal centres whence they arise. This unitary structure–function relationship of the pioneer organism constitutes the ‘Anlage’ for two major strands of evolution: enzymatization and cellularization, whereby the upward evolution of life by increase of molecular complexity is grounded ultimately in the transition metal‐catalyzed, synthetic redox chemistry of the pioneer organism.

[1]  J. D. Bernal,et al.  The Physical Basis of Life , 1949 .

[2]  W. Eisenreich,et al.  A Possible Primordial Peptide Cycle , 2003, Science.

[3]  J. Bada How life began on Earth: a status report , 2004 .

[4]  William E Seyfried,et al.  Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar , 1996 .

[5]  A. Cairns-smith,et al.  The origin of life and the nature of the primitive gene. , 1966, Journal of theoretical biology.

[6]  G. Wächtershäuser,et al.  Before enzymes and templates: theory of surface metabolism. , 1988, Microbiological reviews.

[7]  On the possible role of crystals in the origins of life , 1974, Journal of Molecular Evolution.

[8]  N. Lahav,et al.  A possible role of fluctuating clay-water systems in the production of ordered prebiotic oligomers , 1980, Journal of Molecular Evolution.

[9]  A. Eschenmoser Vitamin B12: Experiments Concerning the Origin of Its Molecular Structure , 1988 .

[10]  K. Stetter,et al.  Pyrite formation linked with hydrogen evolution under anaerobic conditions , 1990, Nature.

[11]  Y. Koga,et al.  Did Archaeal and Bacterial Cells Arise Independently from Noncellular Precursors? A Hypothesis Stating That the Advent of Membrane Phospholipid with Enantiomeric Glycerophosphate Backbones Caused the Separation of the Two Lines of Descent , 1998, Journal of Molecular Evolution.

[12]  J. Ferris Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  L. Orgel,et al.  Template-directed polynucleotide synthesis on mineral surfaces , 2005, Journal of Molecular Evolution.

[14]  J. Wiegel,et al.  Thermophiles : The Keys to the Molecular Evolution and the Origin of Life? , 1998 .

[15]  S. Pitsch,et al.  Mineral Induced Formation of Pentose-2,4-Bisphosphates* , 1999, Origins of life and evolution of the biosphere.

[16]  Freeman J. Dyson,et al.  A model for the origin of life , 2005, Journal of Molecular Evolution.

[17]  P. Forterre The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. , 2005, Biochimie.

[18]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[19]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[20]  C. Duve Selection By Differential Molecular Survival - a Possible Mechanism of Early Chemical Evolution , 1987 .

[21]  G. Wächtershäuser,et al.  Primordial reductive amination revisited , 2003 .

[22]  G. Wächtershäuser,et al.  Groundworks for an evolutionary biochemistry: the iron-sulphur world. , 1992, Progress in biophysics and molecular biology.

[23]  C. Woese Evolution of macromolecular complexity. , 1971, Journal of theoretical biology.

[24]  S. Kauffman Autocatalytic sets of proteins. , 1986 .

[25]  K. Mezger,et al.  Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry , 2002, Nature.

[26]  H. Yanagawa,et al.  Marine hydrothermal systems and the origin of life: future research , 2012 .

[27]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[28]  L. Orgel,et al.  polymerization on the Rocks: β-amino Acids and Arginine , 1998, Origins of life and evolution of the biosphere.

[29]  G. Cody,et al.  Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. , 2000, Science.

[30]  L. Orgel,et al.  Synthesis of long prebiotic oligomers on mineral surfaces , 1996, Nature.

[31]  L. Mukhin Evolution of organic compounds in volcanic regions , 1974, Nature.

[32]  U. Müller,et al.  Re-creating an RNA world , 2006, Cellular and Molecular Life Sciences CMLS.

[33]  R. Stribling,et al.  Attempted nonenzymatic template-directed oligomerizations on a polyadenylic acid template: Implications for the nature of the first genetic material , 2005, Journal of Molecular Evolution.

[34]  V. Kolb,et al.  Mineral Induced Phosphorylation of Glycolate Ion – a Metaphor in Chemical Evolution , 1997, Origins of life and evolution of the biosphere.

[35]  L. Orgel,et al.  Template-directed synthesis and selective adsorption of oligoadenylates on hydroxyapatite , 1980, Journal of Molecular Evolution.

[36]  F. Dyson Origins of Life , 1985 .

[37]  L. Orgel Polymerization on the Rocks: Theoretical Introduction , 1998, Origins of life and evolution of the biosphere.

[38]  C. Cockell The origin and emergence of life under impact bombardment , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  A. Eschenmoser,et al.  Mineral induced formation of sugar phosphates , 1995, Origins of life and evolution of the biosphere.

[40]  Hyman Hartman,et al.  Speculations on the origin and evolution of metabolism , 1975, Journal of Molecular Evolution.

[41]  F. Albarède,et al.  A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites , 2002, Nature.

[42]  G. Wächtershäuser,et al.  Pyrite Formation, the First Energy Source for Life: a Hypothesis , 1988 .

[43]  L. Orgel Evolution of the genetic apparatus. , 1968, Journal of molecular biology.

[44]  C. Nägeli Mechanisch-physiologische Theorie der Abstammungslehre. ... , 1970 .

[45]  E. Corazza Field workshop on volcanic gases, Vulcano (Italy), 1982. General report , 1986 .

[46]  A. Lauwers,et al.  Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment , 1996, Origins of life and evolution of the biosphere.

[47]  G. Wächtershäuser,et al.  Evolution of the first metabolic cycles. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  L. Orgel,et al.  Polymerization on the Rocks: Negatively-Charged α-amino acids , 1998, Origins of life and evolution of the biosphere.

[49]  Peter Scholz,et al.  Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl-(3'→2') Oligonucleotide System , 2000 .

[50]  A. G. Cairns-Smith,et al.  The Life Puzzle: On Crystals and Organisms and on the Possibility of a Crystal as an Ancestor , 1971 .

[51]  S. Jacobsen How Old Is Planet Earth? , 2003, Science.

[52]  L. Orgel,et al.  Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. , 2006, Journal of the American Chemical Society.

[53]  A NOTE ON THE ORIGIN OF LIFE. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. Wächtershäuser,et al.  Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. , 1997, Science.

[55]  Hans Kuhn,et al.  Molecular Self‐Organization and the Origin of Life , 1981 .

[56]  H. Watanabe,et al.  Volcanic production of polyphosphates and its relevance to prebiotic evolution , 1991, Nature.

[57]  G. A. King Evolution of the coenzymes. , 1980, Bio Systems.

[58]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[59]  G. Wächtershäuser,et al.  Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. , 1998, Science.

[60]  J. Ferris,et al.  Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. , 1993, Journal of the American Chemical Society.

[61]  R. E. Eakin AN APPROACH TO THE EVOLUTION OF METABOLISM. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[62]  W. Martin,et al.  On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  D. Hall,et al.  Role for Ferredoxins in the Origin of Life and Biological Evolution , 1971, Nature.

[64]  M. Baltscheffsky Inorganic Pyrophosphate and ATP as Energy Donors in Chromatophores from Rhodospirillum rubrum , 1967, Nature.

[65]  M. O. Dayhoff,et al.  Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences , 1966, Science.

[66]  G. Wächtershäuser Life as We Don't Know It , 2000, Science.

[67]  J. Ferris,et al.  The binding and reactions of nucleotides and polynucleotides on iron oxide hydroxide polymorphs , 1993, Origins of life and evolution of the biosphere.

[68]  W. Brand,et al.  A possible prebiotic formation of ammonia from dinitrogen on iron sulfide surfaces. , 2003, Angewandte Chemie.

[69]  D. Hafenbradl,et al.  Primordial amino acids by reductive amination of α-oxo acids in conjunction with the oxidative formation of pyrite , 1995 .

[70]  G. Wächtershäuser,et al.  α-Hydroxy and α-Amino Acids Under Possible Hadean, Volcanic Origin-of-Life Conditions , 2006, Science.

[71]  R. Shapiro Small Molecule Interactions were Central to the Origin of Life , 2006, The Quarterly Review of Biology.

[72]  R. Kellogg,et al.  Bioorganic Chemistry and the Origin of Life , 1978, Journal of Molecular Evolution.

[73]  G. Wächtershäuser,et al.  From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[74]  G. Wächtershäuser,et al.  From pre‐cells to Eukarya – a tale of two lipids , 2002, Molecular microbiology.

[75]  Juan R. Granja,et al.  A self-replicating peptide , 1996, Nature.

[76]  J. B. Moody Serpentinization: a review , 1976 .

[77]  H. Kuhn Self-organization of molecular systems and evolution of the genetic apparatus. , 1972, Angewandte Chemie.

[78]  D. J. Berrisford,et al.  Ligand‐Accelerated Catalysis , 1995 .

[79]  J. Barrault,et al.  Synthesis of methyl mercaptan from carbon oxides and H2S with tungsten-alumina catalysts , 1987 .

[80]  G. A. King Symbiosis and the evolution of prokaryotes. , 1977, Bio Systems.

[81]  P. Nielsen,et al.  Peptide nucleic acid (PNA): A model structure for the primordial genetic material? , 1993, Origins of life and evolution of the biosphere.

[82]  B. Gedulin,et al.  Mixed-valence hydroxides as bioorganic host minerals , 2005, Origins of life and evolution of the biosphere.

[83]  C. Kuhn,et al.  Diversified world: drive to life's origin?! , 2003, Angewandte Chemie.

[84]  E. Kamenka Philosophy In The Soviet Union , 1963, Philosophy.

[85]  M. Dokiya,et al.  Catalytic activity of metal sulfides for the reaction, H2S + CO = H2 + COS , 1977 .

[86]  J. Amend,et al.  Energetics of amino acid synthesis in hydrothermal ecosystems. , 1998, Science.

[87]  D. Sievers,et al.  Self-replication of complementary nucleotide-based oligomers , 1994, Nature.

[88]  G A King Recycling, reproduction, and life's origins. , 1982, Bio Systems.

[89]  J. Ferris,et al.  Synthesis of RNA oligomers on heterogeneous templates , 1996, Nature.

[90]  H. Heldt,et al.  Inorganic Pyrophosphate: Formation in Bacterial Photophosphorylation , 1966, Science.

[91]  G. Wächtershäuser,et al.  The origin of life and its methodological challenge. , 1997, Journal of theoretical biology.

[92]  R. E. Dickerson,et al.  Chemical evolution and the origin of life. , 1978, Scientific American.

[93]  T. M. Harrison,et al.  Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago , 2001, Nature.

[94]  L. Orgel,et al.  Template-directed oligonucleotide ligation on hydroxylapatite , 1986, Nature.

[95]  G. Arrhenius,et al.  Preferential uptake of ammonium ions by zinc ferrocyanide , 1995, Origins of life and evolution of the biosphere.

[96]  G. Wächtershäuser,et al.  Towards a Reconstruction of Ancestral Genomes by Gene Cluster Alignment , 1998 .

[97]  C. Neal,et al.  Hydrogen generation from mantle source rocks in Oman , 1983 .

[98]  L. Orgel,et al.  Carbonyl Sulfide-Mediated Prebiotic Formation of Peptides , 2004, Science.

[99]  L. Orgel Did template-directed nucleation precede molecular replication? , 1986, Origins of life and evolution of the biosphere.

[100]  A. Cairns-smith,et al.  Chapter 9 Mineral theories of the origin of life and an iron sulfide example , 2005, Origins of life and evolution of the biosphere.