Synthese, Struktur und Cope-Umlagerung einiger 3,7-Dicyan-1,5-dimethylsemibullvalene

Addition von Trimethylsilylcyanid an das Bicyclo[3.3.0]octan-3,7-dion 8 und nachfolgende Umsetzung der diastereomeren O-silylierten Biscyanhydrine 12 mit Trichlorphosphanoxid in siedendem Pyridin ergibt ein 2:1-Gemisch der regiosiomeren ungesattigten Dinitrile C2-13 und Cs-13. Diese werden mit uberschussigem N-Bromsuccinimid in die Tribrom- (14a) und isomeren Tetrabromdinitrile 14b und 15a ubergefuhrt, die durch Kristallisation und selektive Reaktion von 15a mit Diethylphosphit/Triethylamin getrennt werden. Die Struktur des uberwiegenden, unsymmetrischen Tetrabromdinitrils 15a wird durch eine Rontgenstrukturbestimmung aufgeklart. Zink/Kupfer in siedendem Ether debromiert die Tetrabromdinitrile 14b und 15a glatt zu dem 2,6- (2b) bzw. 2,4-Dibrom-3,7-dicyansemibullvalen 2a. Langeres Erhitzen von 15a mit Zink/Kupfer in Tetrahydrofuran fuhrt dagegen zum Brom-3,7-dicyansemibullvalen 1c⇌1c′. Brom/Lithium-Austausch an 1c⇌1c′ mit tert-Butyllithium bei −100°C und Umsetzung des Lithio-3,7-dicyansemibullvalens 1d mit Methanol, Methan-[D]ol und Dicyan ergeben die Semibullvalene 1a, 1b⇌1b′ bzw. 1e⇌1e′. Die Geschwindigkeit der entarteten Cope-Umlagerung der Dibrom-3,7-dicyansemibullvalene 2a und b wird aus der Austauschverbreiterung von 13C-NMR-Signalen im Bereich von 200–290 K bestimmt. Bei 200 K gilt fur 2ak = 260 s−1, ΔG≠ = 39.1±1.5 kJ·mol−1, fur 2bk = 1160 s−1, ΔG≠ = 36.6±0.6 kJ·mol−1. Die starke Verzogerung der entarteten Cope-Umlagerung im Vergleich zu der des 3,7-Dicyansemibullvalens 1a (k = 1.53·106 s−1, ΔG≠ = 24.6±0.3 kJ·mol−1 bei 200 K) hangt somit nur wenig von der Stellung der Bromatome ab. Die Konstanten K der Valenztautomerie-Gleichgewichte der 3,7-Dicyansemibullvalene 1b⇌1b′ (K = 1.112±0.001 bei 298 K), 1c⇌1c′ (0.065±0.02 bei 300 K), 1e⇌1e′ (0.29±0.02 bei 300 K) und der bekannten Bromsemibullvalene 18⇌18′ (0.2±0.02 bei 300 K) werden aus relativen Temperaturgradienten 13C-chemischer Verschiebungen bzw. mit Hilfe von Saunders' Isotopenstorungs-Methode erhalten. Die durch Rontgenstrukturbestimmung ermittelten Atomabstande der Brom-3,7-dicyansemibullvalene 1c und 2a zeigen, das bei beiden im Kristall keine Cope-Umlagerung stattfindet. Dagegen beobachtet man eine statistische Orientierungsfehlordnung im Kristall des 2,6-Dibrom-3,7-dicyansemibullvalens 2b, die auf eine entartete Cope-Umlagerung im festen Zustand hinweist. Synthesis, Structure, and Cope Rearrangement of Some 3,7-Dicyano-1,5-dimethylsemibullvalenes Addition of trimethylsilyl cyanide to the bicyclo[3.3.0]octane-3,7-dione 8 followed by the reaction of the diastereomeric O-silylated biscyanohydrins 12 with phosphoryl chloride in boiling pyridine yields a 2:1 mixture of the regioisomeric unsaturated dinitriles C2-13 and Cs-13. These are converted by an excess of N-bromosuccinimide to the tribromo- (14a) and the isomeric tetrabromodinitriles 14b and 15a which are separated by crystallization and by selective reaction of 15a with diethyl phosphite/triethylamine. The structure of the predominant, unsymmetrical tetrabromodinitrile 15a is determined by an X-ray diffraction analysis. Zinc/copper reagent in boiling ether smoothly debrominates the tetrabromodinitriles 14b and 15a affording the 2,6- (2b) and 2,4-dibromo-3,7-dicyanosemibullvalene 2a, respectively. However, extended heating of 15a in tetrahydrofuran in the presence of zinc/copper reagent produces the bromo-3,7-dicyanoscmibullvalene 1c⇌1c′ Bromine/lithium exchange of the latter by tert-butyllithium at −100°C and quenching of the lithio-3,7-dicyanoscmibullvalene 1d with methanol, methan-[D]ol, and cyanogen yield the semibullvalenes 1a, 1b⇌1b′, and 1e⇌1e′, respectively. The rates of the degenerate Cope rearrangement of the dibromo-3,7-dicyanosemibullvalenes 2a and b are calculated from the exchange broadening of carbon-13 NMR signals in the temperature range 200–290 K. For 200 K one obtains k = 260 s−1, ΔG≠ = 39.1⇌1.5 kJ·mol−1 (2a) and k = 1160 s−1, ΔG≠ = 36.6±0.6 kJ·mol−1 (2b). Thus, the strong deceleration of the degenerate Cope rearrangement relative to that of the 3,7-dicyanosemibullvalene 1a (k = 1.53·106 s−1, ΔG≠ = 24.6±0.3 kJ·mol−1 at 200 K) depends only little on the position of the bromine atoms. For the valence tautomeric equilibria of the 3,7-dicyanosemibullvalenes 1b⇌1b′ (K = 1.112±0.001 at 298 K), 1c⇌1c′ (0.065±0.02 at 300 K), 1e⇌1e′ (0.29±0.02 at 300 K), and the known bromosemibullvalenes 18b⇌18b′ (0.2±0.02 at 300 K) the constants K are determined using relative temperature gradients of carbon-13 shifts or Saunders' isotopic pertubation method. The atomic distances as revealed by X-ray diffraction analyses of the bromo-3,7-dicyanosemibullvalenes 1c and 2a demonstrate that both do not undergo a Cope rearrangement in the crystal. On the contrary, a statistical orientational disorder in the crystal is observed for 2b which is indicative of a degenerate Cope rearrangement in the solid state.

[1]  A. Mayer,et al.  Synthesis and Degenerate Cope Rearrangement of 2,6‐Diphenylbarbaralane. , 1986 .

[2]  H. Schnering,et al.  Synthese, Struktur und thermische Umlagerungen des 2,6‐Dicyan‐1,5‐dimethylsemibullvalens , 1985 .

[3]  H. Schmickler,et al.  Applications of 13C NMR spectroscopy. XXVI: Activation parameters for the degenerate Cope rearrangement of barbaralane and 3,7-disubstituted barbaralanes , 1985 .

[4]  H. Kalinowski Die Isotopen‐Störungsmethode , 1984 .

[5]  R. Okazaki,et al.  2,7-Methanothia[9]annulene: synthesis and equilibrium with its norcaradiene valence isomer , 1984 .

[6]  H. Schnering,et al.  Synthese und Struktur von 2,6-Dicyanbicyclo[3.3.1]nona-2,6-dienen und 2,6-Dicyanbarbaralanen , 1984 .

[7]  H. Quast,et al.  Temperaturabhängigkeit des UV-Spektrums von 1,5-Dimethyl-2,6-semibullvalendicarbonitril, Hinweis auf ein Gleichgewicht mit einem delokalisierten, homoaromatischen Isomer† , 1984 .

[8]  J. Christ,et al.  Temperature Dependence of the UV Spectrum of 1,5‐Dimethyl‐2,6‐semibullvalenedicarbonitrile; Evidence for an Equilibrium with a Delocalized, Homoaromatic Isomer , 1984 .

[9]  D. Nelson An important limitation in the reactions of 1-chloro-1-alkenes with n- or sec-butyllithium , 1984 .

[10]  G. Schröder,et al.  Isolierbare Positionsisomere des Tetrabrombullvalens , 1984 .

[11]  A. Freyer,et al.  The degenerate Cope Rearrangement in 2,6‐Barbaralanedicarbonitrile , 1984 .

[12]  G. Schröder,et al.  Synthesen und substitutionsverhalten einiger anellierter Bullvalene , 1984 .

[13]  C. Braig,et al.  The cope rearrangement in substituted semibullvalenes as studied by dynamic 13C NMR , 1984 .

[14]  R. Askani,et al.  Isotopenstörung zum nachweis einer cope-umlagerung bei semibullvalenen , 1984 .

[15]  J. Gajewski,et al.  Empirical approach to substituent effects in [3,3]-sigmatropic shifts utilizing the thermochemistry of coupled nonconcerted alternative paths , 1984 .

[16]  G. Schröder,et al.  Bullvaleno‐kronenether – Kronenether mit variablen Ringgrößen , 1983 .

[17]  J. Sauer,et al.  Struktur von 1,5‐Dimethylsemibullvalen‐3,7‐dicarbonsäure‐dimethylester und 1,5‐Dimethylsemibullvalen‐3,7‐dicarbonitril , 1983 .

[18]  J. Dannenberg,et al.  Semibullvalenes. 2. A MNDO theoretical study of the rearrangements of semibullvalene and several of its derivatives , 1983 .

[19]  C. S. Yannoni,et al.  Nondegenerate mirror-image rearrangement semibullvalene in the solid state , 1983 .

[20]  T. Hirao,et al.  Reduction of organic halides with diethyl phosphonate and triethylamine. , 1983 .

[21]  P. Brownbridge Silyl Enol Ethers in Synthesis - Part II , 1983 .

[22]  J. Sauer,et al.  Zum mechanismus der semibullvalen-bildung aus 1,2,4,5-tetrazinen und bifunktionellen cyclopropenen , 1983 .

[23]  H. Quast,et al.  Synthesis of some 3,7-dicyano-1,5-dimethylsemibullvalenes , 1983 .

[24]  J. Christ,et al.  Crystal and molecular structure and the cope activation barriers of some dicyano-1,5-dimethylsemibullvalenes , 1983 .

[25]  W. Greenlee Addition of trimethylsilyl cyanide to a-substituted ketones: Catalyst efficiency , 1983 .

[26]  W. Weber Chemistry of Trimethylsilyl Cyanide , 1983 .

[27]  K. Peters,et al.  Synthesis and structure of 2,4-dibromo-3,7-dicyanosemibullvalene. A substitution pattern retarding the cope rearrangement , 1983 .

[28]  J. Hine,et al.  STRUCTURAL EFFECTS ON RATES AND EQUILIBRIUMS. 26. EFFECTS OF 57 SUBSTITUENTS ON THE STABILITIES OF CARBON-CARBON DOUBLE BONDS , 1982 .

[29]  U. Thewalt,et al.  Redox Reactions of a Ferrio-arsane and -stibane with Chlorophosphanes: Synthesis of a Diferrioarsonium Chloride and a Stiborane with Asymmetric Iron Atoms[1]† , 1982 .

[30]  J. R. Lyerla,et al.  Chemical applications of variable-temperature CPMAS NMR spectroscopy in solids , 1982 .

[31]  W. Kirmse,et al.  Cope‐Umlagerungen Donor‐substituierter 1,5‐Hexadiene , 1982 .

[32]  D. Grant,et al.  The temperature dependence of the magnetic susceptibility and proton and carbon-13 chemical shifts of tetramethylsilane , 1982 .

[33]  H. Kalinowski,et al.  Isotopic perturbation of a degenerate valence isomerization. A 13C NMR study of deuterio-1,5-dimethylsemibullvalene , 1982 .

[34]  J. Christ,et al.  2,6-dicyano-1,5-dimethylsemibullvalene as a probe for homoaromatic molecules of the Dewar-Hoffman type , 1982 .

[35]  J. B. Lambert,et al.  Generality of the temperature dependence of carbon-13 shieldings as a probe for conformational or structural equilibriums , 1981 .

[36]  J. Dannenberg,et al.  Semibullvalenes. 1. Synthesis and crystal structure of 1,5-dimethyl-2,4,6,8-tetrakis(carbomethoxy)tricyclo[3.3.0.02,8]octa-3,6-diene a donor-acceptor-substituted semibullvalene , 1981 .

[37]  T. Hirao,et al.  Reduction of gem-dibromides with diethyl phosphite , 1981 .

[38]  Yoshiro Kobayashi,et al.  TETRAKIS(TRIFLUOROMETHYL)SEMIBULLVALENES. COULD COPE DEGENERATION BE FROZEN OUT , 1981 .

[39]  E. W. Colvin,et al.  Chapter 17 – Silyl enol ethers and silyl ketene acetals , 1981 .

[40]  H. Quast,et al.  2,6‐Barbaralane Dicarbonitrile: A Probe for Dewar‐Hoffmann‐Type Homoaromatic Molecules , 1981 .

[41]  W. F. Maier,et al.  Einfache Darstellung von Lithiumdiisopropylamid in molarem Maßstab , 1980 .

[42]  R. Miller,et al.  High resolution NMR studies of solid state effects on fluxional behavior: semibullvalene , 1980 .

[43]  G. Zweifel,et al.  Preparation of Phenyl Cyanate and Its Utilization for the Synthesis of α,β-Unsaturated Nitriles , 1980 .

[44]  J. Sauer,et al.  Eintopfsynthese für substituierte Semibullvalene , 1980 .

[45]  H. Kessler,et al.  The Kinetic and Mechanistic Evaluation of NMR Spectra. New analytical methods (18) , 1980 .

[46]  J. Sauer,et al.  One‐Pot Synthesis of Substituted Semibullvalenes , 1980 .

[47]  H. Kessler,et al.  Die kinetische und mechanistische Auswertung von NMR-Spektren. Neue analytische Methoden (18)† , 1980 .

[48]  H. Schneider,et al.  The temperature dependence of 13C NMR shifts in polar compounds and its role for the determination of conformational equilibria , 1980 .

[49]  W. Groutas,et al.  Synthetic Applications of Cyanotrimethylsilane, lodotrimethylsilane, Azidotrimethylsilane, and Methylthiotrimethylsilane , 1980 .

[50]  L. Paquette The development of polyquinane chemistry , 1979 .

[51]  W. C. Still,et al.  Rapid chromatographic technique for preparative separations with moderate resolution , 1978 .

[52]  G. G. Christoph,et al.  Strained small ring compounds. Structure of a substituted semibullvalene, 1-cyanotricyclo[3.3.0.02,8]octa-3,6-diene. Geometric evidence for homoaromaticity in the molecular ground state , 1978 .

[53]  G. Binsch,et al.  Dynamic proton magnetic resonance studies on complex spin systems. Non‐mutual three‐spin exchange in four 1‐substituted cyclohexanes‐2,2,3,3,4,4,5,5‐d8 and mutual four‐spin exchange in cyclohexane‐1,1,2,2,3,3,4,4‐d8 , 1978 .

[54]  G. Zimmer,et al.  Electrocyclic reactions of tetraenes: Influence of terminal substituents , 1978 .

[55]  L. Paquette,et al.  Substituent influences on the cope equilibrium in semibullvalene: Symmetrical heteroatomic 2.8-pentamethylene derivatives , 1978 .

[56]  G. L'abbé,et al.  Synthesis and chemistry of alkylidenediaziridines , 1977 .

[57]  R. W. Hoffmann,et al.  5‐Methoxy‐semibullvalen , 1977 .

[58]  W. Doering,et al.  Delocalization energy of the cyanomethyl radical: Kinetics of thermal diastereoisomerization of cis- and trans-1,2-dicyano- and 1 ,2-dicyano-1-methylcyclopropanes , 1977 .

[59]  W. G. Kofron,et al.  A convenient method for estimation of alkyllithium concentrations , 1976 .

[60]  L. Paquette,et al.  Chlorocyanation of barrelenes as a route to 1-cyanosemibullvalenes. Convenient introduction of an efficient .pi.-electron acceptor substituent and its influence on the Cope equilibrium , 1976 .

[61]  H. Schneider,et al.  The temperature dependence of carbon-13 nuclear magnetic resonance shifts. Limiting factors and stereochemical applications , 1976 .

[62]  Ronald K. Russell,et al.  Silver(1+) ion catalyzed rearrangements. XXXII. Unsaturated heterocyclic systems. XCIII. Probing of the interrelation between heteroatomic substitution and equilibrium imbalance in 2,8-trimethylenesemibullvalene derivatives , 1975 .

[63]  T. Mukai,et al.  The Photoreactions of 2,3-Dicyanobarrelene , 1975 .

[64]  G. G. Christoph,et al.  1(5)-Cyanosemibullvalene from barrelene. Spectral and crystal structure analysis of the marked equilibrium preference exerted by an efficient .pi.-electron acceptor substituent , 1975 .

[65]  G. Birnberg,et al.  Cheletropic .sigma.2s + .sigma.2s + .sigma.2s ejection of nitrogen from 9,10-diazasnoutenes as a route to monofunctionalized semibullvalenes. Ground state substituent effects on equilibrium displacements , 1974 .

[66]  R. Russell,et al.  Equilibrium imbalances arising from 2,8-bridging by aliphatic chains of the semibullvalene nucleus , 1974 .

[67]  S. Ley,et al.  Directed syntheses of the isomeric dimethylcyclooctatetraenes and a study of their polarographic and alkali metal reduction , 1974 .

[68]  J. Meinwald,et al.  Determination of the fluxional barrier in semibullvalene by proton and carbon-13 nuclear magnetic resonance spectroscopy , 1974 .

[69]  B. Wakefield The Chemistry of Organolithium Compounds , 1974 .

[70]  R. Russell,et al.  Structural consequences of 2,8 bridging of the semibullvalene nucleus , 1972 .

[71]  W. Parham,et al.  Tiffeneau-Demjanov reaction on phenyl-fused cyclopentyl systems , 1972 .

[72]  M. Saunders,et al.  New method for measuring equilibrium deuterium isotope effects. Isomerization of 3-deuterio-2,3-dimethylbutyl-2-ium ion , 1971 .

[73]  P. Schleyer,et al.  GROUND-STATE SUBSTITUENT EFFECTS. I. DEUTERIUM AND METHYL. , 1971 .

[74]  Robert S. H. Liu,et al.  Bis(polyfluoroalkyl)acetylenes. VI. Thermal and photochemical additions of perfluoro-2-butyne to aromatic compounds , 1969 .

[75]  K. Mislow,et al.  Stereochemistry of 9-dimethylamino-9,10-dihydro-4,5-dimethylphenanthrene , 1968 .

[76]  A. Akhtar,et al.  Über α‐funktionelle Vinyllithium‐Verbindungen aus α‐Halogenacrylsäure‐Derivaten , 1968 .

[77]  Robert S. H. Liu 2,3-Bis(perfluormethyl)bicyclo[2.2.2]octa-2,5,7-trienes and their photorearrangement reactions , 1968 .

[78]  G. Schröder,et al.  Neues aus der Bullvalen‐Chemie , 1967 .

[79]  G. Schröder,et al.  Recent Chemistry of Bullvalene , 1967 .

[80]  F. Anet,et al.  Nuclear Magnetic Resonance Line-Shape and Double-Resonance Studies of Ring Inversion in Cyclohexane-d11 , 1967 .

[81]  H. S. Gutowsky,et al.  Nuclear magnetic resonance methods for determining chemical-exchange rates. , 1966, Journal of the American Chemical Society.

[82]  Gerhard Schröder,et al.  Moleküle mit schneller und reversibler Valenzisomerisierung. (Moleküle mit fluktuierenden Bindungen) , 1965 .

[83]  Gerhard Schröder,et al.  Molecules Undergoing Fast, Reversible Valence‐Bond Isomerization. (Molecules with Fluctuating Bonds) , 1965 .

[84]  H. S. Gutowsky,et al.  NMR Studies of Conformational Equilibria in Substituted Ethanes , 1962 .