Conversational Semantic Parsing for Dialog State Tracking

We consider a new perspective on dialog state tracking (DST), the task of estimating a user's goal through the course of a dialog. By formulating DST as a semantic parsing task over hierarchical representations, we can incorporate semantic compositionality, cross-domain knowledge sharing and co-reference. We present TreeDST, a dataset of 27k conversations annotated with tree-structured dialog states and system acts. We describe an encoder-decoder framework for DST with hierarchical representations, which leads to 20% improvement over state-of-the-art DST approaches that operate on a flat meaning space of slot-value pairs.

[1]  Oliver Lemon,et al.  Representing Uncertainty about Complex User Goals in Statistical Dialogue Systems , 2010, SIGDIAL Conference.

[2]  Tsung-Hsien Wen,et al.  Neural Belief Tracker: Data-Driven Dialogue State Tracking , 2016, ACL.

[3]  Richard Socher,et al.  Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems , 2019, ACL.

[4]  Geoffrey E. Hinton,et al.  Grammar as a Foreign Language , 2014, NIPS.

[5]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[6]  Hannes Schulz,et al.  Frames: a corpus for adding memory to goal-oriented dialogue systems , 2017, SIGDIAL Conference.

[7]  Sonal Gupta,et al.  Semantic Parsing for Task Oriented Dialog using Hierarchical Representations , 2018, EMNLP.

[8]  Spyridon Matsoukas,et al.  The Alexa Meaning Representation Language , 2018, NAACL.

[9]  Alexander I. Rudnicky AN AGENDA-BASED DIALOG MANAGEMENT ARCHITECTURE FOR SPOKEN LANGUAGE SYSTEMS , 1999 .

[10]  Phil Blunsom,et al.  Inducing Tree-Substitution Grammars , 2010, J. Mach. Learn. Res..

[11]  Jianfeng Gao,et al.  A User Simulator for Task-Completion Dialogues , 2016, ArXiv.

[12]  Matthew Henderson,et al.  The Second Dialog State Tracking Challenge , 2014, SIGDIAL Conference.

[13]  Dan Klein,et al.  Learning Dependency-Based Compositional Semantics , 2011, CL.

[14]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[15]  Qi Hu,et al.  An End-to-end Approach for Handling Unknown Slot Values in Dialogue State Tracking , 2018, ACL.

[16]  Antoine Raux,et al.  The Dialog State Tracking Challenge Series: A Review , 2016, Dialogue Discourse.

[17]  David Vandyke,et al.  A Network-based End-to-End Trainable Task-oriented Dialogue System , 2016, EACL.

[18]  Bill Byrne,et al.  Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset , 2019, EMNLP.

[19]  Zhou Yu,et al.  How to Build User Simulators to Train RL-based Dialog Systems , 2019, EMNLP.

[20]  Stefan Ultes,et al.  MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling , 2018, EMNLP.

[21]  Gökhan Tür,et al.  Building a Conversational Agent Overnight with Dialogue Self-Play , 2018, ArXiv.

[22]  Raghav Gupta,et al.  Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset , 2020, AAAI.

[23]  Hang Li,et al.  “ Tony ” DNN Embedding for “ Tony ” Selective Read for “ Tony ” ( a ) Attention-based Encoder-Decoder ( RNNSearch ) ( c ) State Update s 4 SourceVocabulary Softmax Prob , 2016 .

[24]  Jianmo Ni,et al.  Scalable and Accurate Dialogue State Tracking via Hierarchical Sequence Generation , 2019, EMNLP.

[25]  Filip Radlinski,et al.  Coached Conversational Preference Elicitation: A Case Study in Understanding Movie Preferences , 2019, SIGdial.

[26]  Hui Ye,et al.  Agenda-Based User Simulation for Bootstrapping a POMDP Dialogue System , 2007, NAACL.

[27]  Ivan Vulić,et al.  Fully Statistical Neural Belief Tracking , 2018, ACL.

[28]  Andrew Chou,et al.  Semantic Parsing on Freebase from Question-Answer Pairs , 2013, EMNLP.

[29]  Sungjin Lee,et al.  Task Lineages: Dialog State Tracking for Flexible Interaction , 2016, SIGDIAL Conference.

[30]  Matthew Henderson,et al.  Word-Based Dialog State Tracking with Recurrent Neural Networks , 2014, SIGDIAL Conference.

[31]  Tae-Yoon Kim,et al.  SUMBT: Slot-Utterance Matching for Universal and Scalable Belief Tracking , 2019, ACL.

[32]  Philipp Koehn,et al.  Abstract Meaning Representation for Sembanking , 2013, LAW@ACL.

[33]  Mona T. Diab,et al.  Multi-Domain Goal-Oriented Dialogues (MultiDoGO): Strategies toward Curating and Annotating Large Scale Dialogue Data , 2019, EMNLP.

[34]  Tao Yu,et al.  Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task , 2018, EMNLP.

[35]  Percy Liang,et al.  Data Recombination for Neural Semantic Parsing , 2016, ACL.