Semi-transparent central stop in high-resolution X-ray ptychography using Kirkpatrick–Baez focusing

A semi-transparent central stop has been used for ptychographic coherent diffractive imaging to increase the effective dynamic range in the recording of the far-field diffraction patterns. In this way, the high flux density provided by nano-focusing Kirkpatrick–Baez mirrors can be fully exploited for high resolution and quantitative phase reconstructions.

[1]  J. Miao,et al.  Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects , 1998 .

[2]  Andreas Menzel,et al.  Reconstructing state mixtures from diffraction measurements , 2013, Nature.

[3]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[4]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[5]  T Salditt,et al.  Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction. , 2012, Optics express.

[6]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[7]  Manuel Guizar-Sicairos,et al.  Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data. , 2010, Optics express.

[8]  Manuel Guizar-Sicairos,et al.  Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging. , 2011, Optics express.

[9]  Sebastian Schöder,et al.  Full optical characterization of coherent x-ray nanobeams by ptychographic imaging. , 2011, Optics express.

[10]  Kazuto Yamauchi,et al.  Towards high-resolution ptychographic x-ray diffraction microscopy , 2011 .

[11]  W. Hoppe,et al.  Beugung im inhomogenen Primärstrahlwellenfeld. III. Amplituden- und Phasenbestimmung bei unperiodischen Objekten , 1969 .

[12]  Hidekazu Mimura,et al.  Development of scanning x-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics , 2006 .

[13]  J. Miao,et al.  Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. , 2012, Journal of applied crystallography.

[14]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[15]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[16]  Yanqing Wu,et al.  Effects of missing low-frequency information on ptychographic and plane-wave coherent diffraction imaging. , 2013, Applied optics.

[17]  S. Marchesini,et al.  High-resolution ab initio three-dimensional x-ray diffraction microscopy. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  Ian K Robinson,et al.  Quantitative X-ray wavefront measurements of Fresnel zone plate and K-B mirrors using phase retrieval. , 2012, Optics express.

[20]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[21]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[22]  T. Ishikawa,et al.  High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter , 2013 .

[23]  H M L Faulkner,et al.  Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy. , 2005, Ultramicroscopy.

[24]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[25]  Tim Salditt,et al.  Hard x-ray nanobeam characterization by coherent diffraction microscopy , 2010 .

[26]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  W. Hoppe,et al.  Beugung in inhomogenen Primärstrahlenwellenfeld. II. Lichtoptische Analogieversuche zur Phasenmessung von Gitterinterferenzen , 1969 .

[29]  M. Fink,et al.  Imaging Processes and Coherence in Physics , 1980 .

[30]  Christian G. Schroer,et al.  Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes , 2012 .

[31]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[32]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  B. Schmitt,et al.  Single photon counting pixel detectors for synchrotron radiation experiments , 2010 .

[34]  O. Bunk,et al.  Influence of the overlap parameter on the convergence of the ptychographical iterative engine. , 2008, Ultramicroscopy.

[35]  T. Ishikawa,et al.  Efficient focusing of hard x rays to 25nm by a total reflection mirror , 2007 .

[36]  John M. Rodenburg,et al.  Electron ptychography. I. Experimental demonstration beyond the conventional resolution limits , 1998 .

[37]  P. Cloetens,et al.  Efficient sub 100 nm focusing of hard x rays , 2005 .

[38]  Heinz H. Bauschke,et al.  Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  W. Hoppe Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen , 1969 .

[40]  B. C. McCallum,et al.  Resolution beyond the 'information limit' in transmission electron microscopy , 1995, Nature.

[41]  S. Kalbfleisch,et al.  Partially coherent nano-focused x-ray radiation characterized by Talbot interferometry. , 2011, Optics express.

[42]  S. Kalbfleisch,et al.  Versatility of a hard X-ray Kirkpatrick-Baez focus characterized by ptychography. , 2013, Journal of synchrotron radiation.

[43]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.