A Big Data Platform for Large Scale Event Processing
暂无分享,去创建一个
a reducer function that processes intermediate values associated with the same intermediate key. For the example of simply counting the number of terms occurring across the entire collection of documents, the mapper takes as input a document URL (key) and the document content (value) and outputs pairs of term and term count in the document. The reducer then aggregates all term counts of a term together and outputs the number of occurrences of each term in the collection. Our experiments are made of several such MapReduce programs: We extract anchor texts from web pages, we gather global statistics for terms that occur in our test queries, we remove spam pages, and we run a search experiment by reading web pages one at a time, and on each page we execute all test queries. Sequential scanning allows us to do almost anything we like, for instance sophisticated natural language processing. If the new approach is successful, it will have to be implemented in a search engine’s indexing and querying facilities, but there is no point in making a new index if the experiment is unsuccessful. Researchers at Google and Microsoft have recently reported on similar experimental infrastructures.