Confining grains of textured Cu2O films to single-crystal nanowires and resultant change in resistive switching characteristics.

By confining columnar grains of textured oxide film using anodized aluminum oxide template, we could obtain a grain-boundary-free (GB-free) cuprous oxide (Cu(2)O) nanowire arrays with a narrow diameter distribution and a high density under the same electrochemical deposition condition. A two-terminal device fabricated using an individual GB-free nanowire and Au/Cr electrodes exhibits bipolar resistive switching contrary to the unipolar one of a textured film, and Schottky-like conduction. On the other hand, a nanowire device with Pt electrodes reveals non-switching behavior and Ohmic conduction. Thus, we can propose that the bipolar switching of a nanowire device with Au/Cr electrodes may result from the modulation of Schottky barrier at the interface by migration of oxygen vacancies while the unipolar one of a textured film may be defined as the bulky filamentary switching along the GBs in the GB-embedded texture films.

[1]  B. Park,et al.  Unipolar resistive switching mechanism speculated from irreversible low resistance state of Cu2O films , 2011 .

[2]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[3]  John Paul Strachan,et al.  Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching , 2010, Advanced materials.

[4]  Jong Yeog Son,et al.  NiO resistive random access memory nanocapacitor array on graphene. , 2010, ACS nano.

[5]  Tomoji Kawai,et al.  Resistive-switching memory effects of NiO nanowire/metal junctions. , 2010, Journal of the American Chemical Society.

[6]  T. Hasegawa,et al.  Learning Abilities Achieved by a Single Solid‐State Atomic Switch , 2010, Advanced materials.

[7]  Masateru Taniguchi,et al.  Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. , 2010, Nano letters.

[8]  Wondong Kim,et al.  Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries , 2010 .

[9]  B. Park,et al.  Direct investigation on conducting nanofilaments in single-crystalline Ni/NiO core/shell nanodisk arrays , 2010 .

[10]  B. Park,et al.  Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films , 2009 .

[11]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[12]  Jung-Hyun Lee,et al.  Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. , 2009, Nano letters.

[13]  Tomoji Kawai,et al.  Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. , 2009, Journal of the American Chemical Society.

[14]  L Liu,et al.  Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane , 2008, Nanotechnology.

[15]  Seung Chul Chae,et al.  Role of structural defects in the unipolar resistive switching characteristics of Pt∕NiO∕Pt structures , 2008 .

[16]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[17]  Se-Ho Lee,et al.  Core-shell heterostructured phase change nanowire multistate memory. , 2008, Nano letters.

[18]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[19]  Hongkun Park,et al.  Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures. , 2008, Journal of the American Chemical Society.

[20]  J. S. Lee,et al.  Occurrence of both unipolar memory and threshold resistance switching in a NiO film. , 2008, Physical review letters.

[21]  B. Kahng,et al.  Random Circuit Breaker Network Model for Unipolar Resistance Switching , 2008 .

[22]  Jae Hyuck Jang,et al.  Effects of heat dissipation on unipolar resistance switching in Pt∕NiO∕Pt capacitors , 2008, 0802.3739.

[23]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[24]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[25]  Cheol Seong Hwang,et al.  Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films , 2007 .

[26]  Yi Cui,et al.  Electrical switching and phase transformation in silver selenide nanowires. , 2007, Journal of the American Chemical Society.

[27]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[28]  L. Anovitz,et al.  Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4 , 2007 .

[29]  S. H. Jeon,et al.  A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .

[30]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[31]  Kornelius Nielsch,et al.  A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. , 2005, Angewandte Chemie.

[32]  J. Switzer,et al.  Epitaxial Electrodeposition of High-Aspect-Ratio Cu2O(110) Nanostructures on InP(111) , 2005 .

[33]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[34]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[35]  A. Rakhshani The role of space‐charge‐limited‐current conduction in evaluation of the electrical properties of thin Cu2O films , 1991 .

[36]  ERIC M. VOGEL,et al.  Technology and metrology of new electronic materials and devices. , 2007, Nature nanotechnology.