Hyperspektral-Imaging bei gastrointestinalen Anastomosen

ZusammenfassungEinleitungAnastomoseninsuffizienzen (AIs) sind die schwerwiegendsten Komplikationen in der gastrointestinalen Chirurgie mit assoziierter Verlängerung des stationären Aufenthalts und signifikanter Mortalität. Hyperspektralbildgebung („hyperspectral imaging“, HSI) ist ein relativ neues Bildgebungsverfahren, das für die Erkennung von Strukturen und für die Auswertung der Gewebedurchblutung, -oxygenierung sowie dessen Wasserhaushalts in der Wundtherapie vielversprechende Ergebnisse gezeigt hat. Zur In-vivo-Beurteilung gastrointestinaler Anastomosen liegen allerdings bisher noch keine Daten vor.MethodikEs wurde die intraoperative HS-Bildgebung mit dem TIVITA™ Tissue-Kamerasystem der Firma Diaspective Vision GmbH (Pepelow, Deutschland) angewandt. Bei 47 Patienten mit gastrointestinalen (GI) Anastomosen an Ösophagus, Magen, Pankreas, Dünn- und Dickdarm sowie Rektum wurden 97 auswertbare Aufnahmen generiert. Es wurden an den Anastomosen die Parameter Gewebeoxygenierung („tissue O2 saturation“, StO2), Gewebe-Hämoglobin-Index („tissue hemoglobin index“, THI), Nahinfrarot-Perfusions-Index („near-infrared[NIR] perfusion index“) und Gewebe-Wasser-Index („tissue water index“, TWI) erhoben.ErgebnisseDie Anwendung der nichtinvasiven HSI war bei allen Anastomosierungen technisch gut praktikabel mit robusten Ergebnissen. Dabei fand sich ein NIR-Gradient längs und quer entlang der Anastomose. Auch die Gewebewasserverteilung und -oxygenierung zeigten spezifische Verläufe rund um die Anastomosenregion.SchlussfolgerungHSI bietet als kontaktfreie, nichtinvasive und kontrastmittellose intraoperative Bildgebungsmethode eine objektive Real-time-Messung physiologischer Anastomosenparameter, die möglicherweise dazu beitragen kann, die „ideale“ Anastomosenregion/-höhe zu determinieren. Hierzu ist eine weitere Etablierung der Methodik in der Viszeralchirurgie mit Generierung von Norm- bzw. Cut-off-Werten für die unterschiedlichen intestinalen Anastomosenarten erforderlich.AbstractIntroductionAnastomotic insufficiency (AI) remains the most feared surgical complication in gastrointestinal surgery, which is closely associated with a prolonged inpatient hospital stay and significant postoperative mortality. Hyperspectral imaging (HSI) is a relatively new medical imaging procedure which has proven to be promising in tissue identification as well as in the analysis of tissue oxygenation and water content. Until now, no data exist on the in vivo HSI analysis of gastrointestinal anastomoses.MethodsIntraoperative images were obtained using the TIVITA™ tissue system HSI camera from Diaspective Vision GmbH (Pepelow, Germany). In 47 patients who underwent gastrointestinal surgery with esophageal, gastric, pancreatic, small bowel or colorectal anastomoses, 97 assessable recordings were generated. Parameters obtained at the sites of the anastomoses included tissue oxygenation (StO2), the tissue hemoglobin index (THI), near-infrared (NIR) perfusion index, and tissue water index (TWI).ResultsObtaining and analyzing the intraoperative images with this non-invasive imaging system proved practicable and delivered good results on a consistent basis. A NIR gradient along and across the anastomosis was observed and, furthermore, analysis of the tissue water and oxygenation content showed specific changes at the site of anastomosis.ConclusionThe HSI method provides a non-contact, non-invasive, intraoperative imaging procedure without the use of a contrast medium, which enables a real-time analysis of physiological anastomotic parameters, which may contribute to determine the ”ideal“ anastomotic region. In light of this, the establishment of this methodology in the field of visceral surgery, enabling the generation of normal or cut off values for different gastrointestinal anastomotic types, is an obvious necessity.

[1]  S. Turcotte,et al.  The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. , 2013, The Journal of surgical research.

[2]  C. Fife,et al.  Transcutaneous oximetry in clinical practice: consensus statements from an expert panel based on evidence. , 2009, Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc.

[3]  R. Takahashi,et al.  Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis , 2017, Surgical Endoscopy.

[4]  R. Takahashi,et al.  ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery , 2017, Surgical Endoscopy.

[5]  Y. Kosugi,et al.  Cancer detection using infrared hyperspectral imaging , 2011, Cancer science.

[6]  E. Livingston,et al.  Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery. , 2007, Analytical chemistry.

[7]  Michael Jünger,et al.  Hyperspectral imaging as a novel diagnostic tool in microcirculation of wounds. , 2017, Clinical hemorheology and microcirculation.

[8]  T. Fitzgerald,et al.  Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin. , 2012, Journal of biomedical optics.

[9]  W. M. Hafizah,et al.  Optical investigation of variability in body region dependent transcutaneous oxygen saturation , 2016 .

[10]  Ismail Gögenur,et al.  Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials , 2016, Langenbeck's Archives of Surgery.

[11]  Axel Kulcke,et al.  First results of a new hyperspectral camera system for chemical based wound analysis , 2015 .

[12]  Amadeus Holmer,et al.  The ability of hyperspectral imaging to detect perfusion disorders , 2017, European Conference on Biomedical Optics.

[13]  S. Wilson,et al.  Hyperspectral image measurements of skin hemoglobin compared with transcutaneous PO2 measurements. , 2012, Annals of vascular surgery.

[14]  Guolan Lu,et al.  Medical hyperspectral imaging: a review , 2014, Journal of biomedical optics.

[15]  Amadeus Holmer,et al.  Hyperspectral imaging for monitoring of perfusion failure upon microvascular anastomosis in the rat hind limb. , 2018, Microvascular research.

[16]  M. Kraljević,et al.  Colon Perfusion Patterns During Colorectal Resection Using Visible Light Spectroscopy , 2017, World Journal of Surgery.

[17]  E. Haglind,et al.  Preoperative risk factors for anastomotic leakage after resection for colorectal cancer: a systematic review and meta‐analysis , 2014, Colorectal disease : the official journal of the Association of Coloproctology of Great Britain and Ireland.

[18]  Steven D. Mills,et al.  The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery , 2013, Surgical Endoscopy.

[19]  Roxana Savastru,et al.  Hyperspectral imaging-based wound analysis using mixture-tuned matched filtering classification method , 2015, Journal of biomedical optics.

[20]  Alex Keller,et al.  A New Diagnostic Algorithm for Early Prediction of Vascular Compromise in 208 Microsurgical Flaps Using Tissue Oxygen Saturation Measurements , 2009, Annals of plastic surgery.

[21]  A. Dabrowski,et al.  Endoscopic management of gastrointestinal perforations, leaks and fistulas. , 2015, World journal of gastroenterology.

[22]  Joseph E Martz,et al.  Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. , 2015, Journal of the American College of Surgeons.

[23]  Marianne Maktabi,et al.  Session 20. Hyperspectral imaging and optical techniques in medicine , 2017, Biomedizinische Technik. Biomedical engineering.

[24]  Gordon K. Lee,et al.  White light spectroscopy for free flap monitoring , 2013, Microsurgery.

[25]  S. Nguyen,et al.  Risk factors for anastomotic leak following colorectal surgery: a case-control study. , 2010, Archives of surgery.

[26]  Giuseppe Spinoglio,et al.  The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery , 2014, Surgical Endoscopy.

[27]  M. Hashizume,et al.  Integrated Endoscopic System Based on Optical Imaging and Hyperspectral Data Analysis for Colorectal Cancer Detection. , 2016, Anticancer research.

[28]  A. Schachtrupp,et al.  Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage , 2010, Langenbeck's Archives of Surgery.

[29]  Lise L. Randeberg,et al.  Hyperspectral imaging as a diagnostic tool for chronic skin ulcers , 2013, Photonics West - Biomedical Optics.

[30]  K. Dhital,et al.  Is low serum albumin associated with postoperative complications in patients undergoing oesophagectomy for oesophageal malignancies? , 2015, Interactive cardiovascular and thoracic surgery.

[31]  N. Harlaar,et al.  Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery , 2009, International Journal of Colorectal Disease.

[32]  Dean E. Myers,et al.  Tissue hemoglobin index: a non-invasive optical measure of total tissue hemoglobin , 2009, Critical care.

[33]  T. Kingham,et al.  Colonic anastomotic leak: risk factors, diagnosis, and treatment. , 2009, Journal of the American College of Surgeons.

[34]  Yoshihiko Hamamoto,et al.  Use of hyperspectral imaging technology to develop a diagnostic support system for gastric cancer , 2015, Journal of biomedical optics.

[35]  J. Chin,et al.  Use of hyperspectral imaging to assess endothelial dysfunction in peripheral arterial disease. , 2016, Journal of vascular surgery.

[36]  U. Hopt,et al.  Impact of intraoperative temperature and humidity on healing of intestinal anastomoses , 2014, International Journal of Colorectal Disease.

[37]  Guang-Zhong Yang,et al.  Manifold Embedding and Semantic Segmentation for Intraoperative Guidance With Hyperspectral Brain Imaging , 2017, IEEE Transactions on Medical Imaging.

[38]  Hagen Malberg,et al.  Hyperspectral imaging for monitoring oxygen saturation levels during normothermic kidney perfusion , 2016 .

[39]  Dongsheng Wang,et al.  A Minimum Spanning Forest-Based Method for Noninvasive Cancer Detection With Hyperspectral Imaging , 2016, IEEE Transactions on Biomedical Engineering.

[40]  Pejhman Ghassemi,et al.  Noninvasive imaging technologies for cutaneous wound assessment: A review , 2015, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[41]  Robert P. W. Duin,et al.  Multi-spectral video endoscopy system for the detection of cancerous tissue , 2013, Pattern Recognit. Lett..

[42]  Lejla Alic,et al.  Differentiation between nerve and adipose tissue using wide‐band (350–1,830 nm) in vivo diffuse reflectance spectroscopy , 2014, Lasers in surgery and medicine.

[43]  Hagen Malberg,et al.  Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs , 2016, Physiological measurement.

[44]  John Allen,et al.  Microvascular imaging: techniques and opportunities for clinical physiological measurements , 2014, Physiological measurement.

[45]  D. Hervás,et al.  Risk Factors for Anastomotic Leak After Colon Resection for Cancer: Multivariate Analysis and Nomogram From a Multicentric, Prospective, National Study With 3193 Patients. , 2015, Annals of surgery.