Video-based 3D motion capture through biped control

Marker-less motion capture is a challenging problem, particularly when only monocular video is available. We estimate human motion from monocular video by recovering three-dimensional controllers capable of implicitly simulating the observed human behavior and replaying this behavior in other environments and under physical perturbations. Our approach employs a state-space biped controller with a balance feedback mechanism that encodes control as a sequence of simple control tasks. Transitions among these tasks are triggered on time and on proprioceptive events (e.g., contact). Inference takes the form of optimal control where we optimize a high-dimensional vector of control parameters and the structure of the controller based on an objective function that compares the resulting simulated motion with input observations. We illustrate our approach by automatically estimating controllers for a variety of motions directly from monocular video. We show that the estimation of controller structure through incremental optimization and refinement leads to controllers that are more stable and that better approximate the reference motion. We demonstrate our approach by capturing sequences of walking, jumping, and gymnastics.

[1]  W. T. Dempster,et al.  SPACE REQUIREMENTS OF THE SEATED OPERATOR, GEOMETRICAL, KINEMATIC, AND MECHANICAL ASPECTS OF THE BODY WITH SPECIAL REFERENCE TO THE LIMBS , 1955 .

[2]  Dimitris N. Metaxas,et al.  Shape and Nonrigid Motion Estimation Through Physics-Based Synthesis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Joe Marks,et al.  Spacetime constraints revisited , 1993, SIGGRAPH.

[4]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[5]  David Baraff,et al.  Linear-time dynamics using Lagrange multipliers , 1996, SIGGRAPH.

[6]  Alex Pentland,et al.  Dynamic models of human motion , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[7]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[8]  Michael Bradley Cline Rigid Body Simulation with Contact and Constraints , 2002 .

[9]  Steven M. Seitz,et al.  Computing the Physical Parameters of Rigid-Body Motion from Video , 2002, ECCV.

[10]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[11]  S. Schaal,et al.  Computational motor control in humans and robots , 2005, Current Opinion in Neurobiology.

[12]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[13]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[14]  David J. Fleet,et al.  3D People Tracking with Gaussian Process Dynamical Models , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  David J. Fleet,et al.  Physics-Based Person Tracking Using Simplified Lower-Body Dynamics , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[17]  Petros Faloutsos,et al.  A dynamic controller toolkit , 2007, Sandbox '07.

[18]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.

[19]  Cristian Sminchisescu,et al.  BM³E : Discriminative Density Propagation for Visual Tracking , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Philippe Beaudoin,et al.  Continuation methods for adapting simulated skills , 2008, SIGGRAPH 2008.

[21]  Philippe Beaudoin,et al.  Continuation methods for adapting simulated skills , 2008, ACM Trans. Graph..

[22]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[23]  David J. Fleet,et al.  The Kneed Walker for human pose tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Odest Chadwicke Jenkins,et al.  Physical simulation for probabilistic motion tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Cristian Sminchisescu,et al.  Twin Gaussian Processes for Structured Prediction , 2010, International Journal of Computer Vision.

[26]  David J. Fleet,et al.  Optimizing walking controllers , 2009, SIGGRAPH 2009.

[27]  Philippe Beaudoin,et al.  Robust task-based control policies for physics-based characters , 2009, ACM Trans. Graph..

[28]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[29]  Philippe Beaudoin,et al.  Robust task-based control policies for physics-based characters , 2009, SIGGRAPH 2009.

[30]  Michael J. Black,et al.  HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion , 2010, International Journal of Computer Vision.

[31]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[32]  Hans-Peter Seidel,et al.  Motion capture using joint skeleton tracking and surface estimation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  R. Cooter Crisis , 2009, The Lancet.

[34]  David J. Fleet,et al.  Estimating contact dynamics , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[35]  Zoran Popović,et al.  Contact-aware nonlinear control of dynamic characters , 2009, SIGGRAPH 2009.

[36]  David J. Fleet,et al.  Optimizing walking controllers for uncertain inputs and environments , 2010, ACM Trans. Graph..

[37]  Tong-Yee Lee,et al.  Real-Time Physics-Based 3D Biped Character Animation Using an Inverted Pendulum Model , 2010, IEEE Transactions on Visualization and Computer Graphics.

[38]  Jinxiang Chai,et al.  VideoMocap: modeling physically realistic human motion from monocular video sequences , 2010, SIGGRAPH 2010.

[39]  Yoonsang Lee,et al.  Data-driven biped control , 2010, ACM Trans. Graph..

[40]  Jehee Lee,et al.  Data-driven biped control , 2010, SIGGRAPH 2010.

[41]  Taesoo Kwon,et al.  Control systems for human running using an inverted pendulum model and a reference motion capture sequence , 2010, SCA '10.

[42]  M. V. D. Panne,et al.  Sampling-based contact-rich motion control , 2010, ACM Trans. Graph..

[43]  David J. Fleet,et al.  Optimizing walking controllers for uncertain inputs and environments , 2010, SIGGRAPH 2010.

[44]  Xiaolin K. Wei,et al.  VideoMocap: modeling physically realistic human motion from monocular video sequences , 2010, ACM Trans. Graph..