Fault-tolerant quantum error detection

We show the fault-tolerant encoding, measurement, and operation of a logical qubit via quantum error detection. Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors.

[1]  Andrew W. Cross,et al.  A comparative code study for quantum fault tolerance , 2007, Quantum Inf. Comput..

[2]  Jian-Wei Pan,et al.  Experimental quantum coding against qubit loss error , 2008, Proceedings of the National Academy of Sciences.

[3]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[5]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[7]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[8]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[9]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[10]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[12]  E. Solano,et al.  Deterministic Bell states and measurement of the motional state of two trapped ions , 1999 .

[13]  John Preskill,et al.  Optimal Bacon-Shor codes , 2012, Quantum Inf. Comput..

[14]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[15]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[16]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[17]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[18]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[19]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[20]  Shi-Liang Zhu,et al.  Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams , 2006 .

[21]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[22]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[23]  M. A. Rol,et al.  Repeated quantum error correction on a continuously encoded qubit by real-time feedback , 2015, Nature Communications.

[24]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[25]  Barbara M. Terhal,et al.  Noise thresholds for the [4, 2, 2]-concatenated toric code , 2016, Quantum Inf. Comput..

[26]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[27]  W Dür,et al.  Measurement-based quantum computation with trapped ions. , 2013, Physical review letters.

[28]  Sergey Bravyi,et al.  Simulation of rare events in quantum error correction , 2013, 1308.6270.

[29]  M. S. Tame,et al.  Experimental demonstration of a graph state quantum error-correction code , 2014, Nature Communications.

[30]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[31]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[32]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[33]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[34]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Daniel Gottesman,et al.  Quantum fault tolerance in small experiments , 2016, 1610.03507.

[36]  C Figgatt,et al.  Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. , 2014, Physical review letters.