Semisupervised multiattribute seismic facies analysis

AbstractOne of the key components of traditional seismic interpretation is to associate or “label” a specific seismic amplitude package of reflectors with an appropriate seismic or geologic facies. The object of seismic clustering algorithms is to use a computer to accelerate this process, allowing one to generate interpreted facies for large 3D volumes. Determining which attributes best quantify a specific amplitude or morphology component seen by the human interpreter is critical to successful clustering. Unfortunately, many patterns, such as coherence images of salt domes, result in a salt-and-pepper classification. Application of 3D Kuwahara median filters smooths the interior attribute response and sharpens the contrast between neighboring facies, thereby preconditioning the attribute volumes for subsequent clustering. In our workflow, the interpreter manually painted n target facies using traditional interpretation techniques, resulting in attribute training data for each facies. Candidate attribute...

[1]  Robert G. Clapp,et al.  Salt delineation via interpreter-guided 3D seismic image segmentation , 2014 .

[2]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Bo Zhang,et al.  Attribute expression of fault-controlled karst - Fort Worth Basin, TX , 2014 .

[4]  Paolo Ruffo,et al.  3D hydrocarbon migration by percolation technique in an alternate sand–shale environment described by a seismic facies classified volume , 2009 .

[5]  Yi Luo,et al.  3D edge-preserving smoothing and applications , 2002 .

[6]  Bradley C. Wallet,et al.  Using Mathematical Morphology in an Attribute Workflow to Improve the Interpretability of Salt Bodies in the Gulf of Mexico , 2013 .

[7]  K. Marfurt,et al.  Seismic Color Self-Organizing Maps , 2009 .

[8]  Jürgen Döllner,et al.  Image and Video Abstraction by Anisotropic Kuwahara Filtering , 2009, Comput. Graph. Forum.

[9]  Dengliang Gao,et al.  Volume texture extraction for 3D seismic visualization and interpretation , 2003 .

[10]  Robert G. Clapp,et al.  Application of image segmentation to tracking 3D salt boundaries , 2007 .

[11]  Tatum M. Sheffield,et al.  Geovolume Visualization And Interpretation: What Makes a Useful Visualization Seismic Attribute? , 2008 .

[12]  Thierry Coléou,et al.  Interpreter's Corner—Unsupervised seismic facies classification: A review and comparison of techniques and implementation , 2003 .

[13]  Kurt J. Marfurt,et al.  Robust estimates of 3D reflector dip and azimuth , 2006 .

[14]  Bo Zhang,et al.  Attribute expression of fault-controlled karst — Fort Worth Basin, Texas: A tutorial , 2014 .

[15]  Anne H. Schistad Solberg,et al.  Texture attributes for detection of salt , 2013 .

[16]  Kendall Preston,et al.  Digital processing of biomedical images , 1976 .

[17]  Yi Luo,et al.  Histogram Equalization And Its Application In Seismic Exploration , 2001 .

[18]  Dengliang Gao,et al.  Application of three-dimensional seismic texture analysis with special reference to deep-marine facies discrimination and interpretation: Offshore Angola, west Africa , 2007 .

[19]  K. Marfurt,et al.  Beyond Curvature - Volumetric Estimates of Reflector Rotation And Convergence , 2010 .

[20]  Kurt J. Marfurt,et al.  Generative topographic mapping for seismic facies estimation of a carbonate wash, Veracruz Basin, southern Mexico , 2014 .

[21]  B. P. West,et al.  Interactive seismic facies classification using textural attributes and neural networks , 2002 .

[22]  Arthur E. Barnes,et al.  Investigation of Methods For Unsupervised Classification of Seismic Data , 2002 .

[23]  Kurt J. Marfurt,et al.  Characterizing a Mississippian tripolitic chert reservoir using 3D unsupervised and supervised multiattribute seismic facies analysis: An example from Osage County, Oklahoma , 2013 .

[24]  Kurt J. Marfurt,et al.  3D volumetric multispectral estimates of reflector curvature and rotation , 2006 .

[25]  Paul Meldahl,et al.  The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks: Part II; interpretation , 1999 .

[26]  Dave Hale,et al.  Atomic meshing of seismic images , 2002 .