Parallel pivoting combined with parallel reduction and fill-in control

Parallel algorithms for triangularization of large, sparse, and unsymmetric matrices are presented. The method combines the parallel reduction with a new parallel pivoting technique, control over generation of fill-ins and check for numerical stability, all done in parallel with the work being distributed over the active processes. The parallel pivoting technique uses the compatibility relation between pivots to identify parallel pivot candidates and uses the Markowitz number of pivots to minimize fill-in. This technique is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds.

[1]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[2]  Iain S. Duff,et al.  Parallel implementation of multifrontal schemes , 1986, Parallel Comput..

[3]  Harry F. Jordan,et al.  Structuring parallel algorithms in an MIMD, shared memory environment , 1986, Parallel Comput..

[4]  Douglas Lewin,et al.  Logical design of switching circuits , 1968 .

[5]  Harry F. Jordan Interpreting parallel processor performance measurements , 1985, PPSC.

[6]  J. Taylor,et al.  Switching and finite automata theory, 2nd ed. , 1980, Proceedings of the IEEE.

[7]  L. Higbie Optimal Parallel Triangulation of a Sparse Matrix , 1979 .

[8]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .

[9]  Frans J. Peters,et al.  Parallel pivoting algorithms for sparse symmetric matrices , 1984, Parallel Comput..

[10]  H. F. Jordan Parallel computation with the force , 1985 .

[11]  G. Alaghband Multiprocessor sparse LU decomposition with controlled fill-in , 1986 .

[12]  Michael R. Leuze,et al.  Parallel triangularization of substructured finite element problems , 1986 .

[13]  Omar Wing,et al.  A Computation Model of Parallel Solution of Linear Equations , 1980, IEEE Transactions on Computers.

[14]  Harry F. Jordan,et al.  Sparse Gaussian Elimination with Controlled Fill-in on a Shared Memory Multiprocessor , 1989, IEEE Trans. Computers.

[15]  Jochen A. G. Jess,et al.  A Data Structure for Parallel L/U Decomposition , 1982, IEEE Transactions on Computers.