Determination of high cycle fatigue properties of a wide range of steel sheet grades from self-heating measurements

The development of a self-heating method, based on self-heating measurements is proposed in order to predict S–N–P curves (i.e., amplitude stress-number of cycles to failure-probability of failure). Two dissipative phenomena can be observed on self-heating curves for the 16 steel grades of interest, the first for low amplitudes of cyclic loading and the second for higher amplitudes. In order to predict the fatigue properties accurately, a two scale probabilistic model, with two dissipative mechanisms (to account for the two dissipative phenomena) is proposed. Finally, the prediction made using the proposed approach is validated by its comparison with traditional fatigue tests, thus demonstrating time-saving advantages in the determination of steel grade fatigue properties.

[1]  D. P. Harvey,et al.  Detection of fatigue macrocracks in 1100 aluminum from thermomechanical data , 2000 .

[2]  André Galtier Contribution à l'étude de l'endommagement des aciers sous sollicitations uni ou multi-axiales , 1993 .

[3]  B. Yang,et al.  Temperature evolution during fatigue damage , 2005 .

[4]  Sylvain Calloch,et al.  A new approach to characterizing and modeling the high cycle fatigue properties of cast materials based on self-heating measurements under cyclic loadings , 2013 .

[5]  F. Hild,et al.  Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue , 2010 .

[6]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[7]  C. E. Stromeyer The determination of fatigue limits under alternating stress conditions , 1914 .

[8]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[9]  Cédric Doudard Détermination rapide des propriétés en fatigue à grand nombre de cycles à partir d'essais d'échauffement , 2004 .

[10]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[11]  François Hild,et al.  Identification of the scatter in high cycle fatigue from temperature measurements , 2004 .

[12]  Claude Bathias,et al.  A rapid scatter prediction method for very high cycle fatigue , 2013 .

[13]  Antonino Risitano,et al.  Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components , 2000 .

[14]  F. Hild,et al.  Prediction of self-heating measurements under proportional and non-proportional multiaxial cyclic loadings , 2007 .

[15]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[16]  Sylvain Calloch,et al.  Influence of hardening type on self-heating of metallic materials under cyclic loadings at low amplitude , 2009 .

[17]  François Hild,et al.  A probabilistic two-scale model for high-cycle fatigue life predictions , 2005 .

[18]  S. L. Phoenix,et al.  Weibull strength statistics for graphite fibres measured from the break progression in a model graphite/glass/epoxy microcomposite , 1991 .

[19]  R. Sesana,et al.  Dissipative aspects in thermographic methods , 2012 .

[20]  M. Berveiller,et al.  Micromechanical modeling of the interactions between the microstructure and the dissipative deformation mechanisms in steels under cyclic loading , 2012 .

[21]  Martin Poncelet,et al.  Multiaxialité, hétérogénéités intrinsèques et structurales des essais d'auto-échauffement et de fatigue à grand nombre de cycles , 2007 .

[22]  Alfonso Fernández-Canteli,et al.  Checking the fatigue limit from thermographic techniques by means of a probabilistic model of the epsilon–N field , 2012 .

[23]  C. Mareau Modélisation micromécanique de l'échauffement et de la microplasticité des aciers sous sollicitations cycliques , 2007 .

[24]  K. Dang Van,et al.  Fatigue design of structures under thermomechanical loadings , 2002 .

[25]  Dominique Jeulin,et al.  Modeles morphologiques de structures aleatoires et de changement d'echelle , 1991 .

[26]  Antonino Risitano,et al.  Rapid determination of the fatigue curve by the thermographic method , 2002 .

[27]  S. Calloch,et al.  Fast prediction of the Wöhler curve from heat build-up measurements on Short Fiber Reinforced Plastic , 2013 .

[28]  Giovanni Meneghetti,et al.  Analysis of the fatigue strength of a stainless steel based on the energy dissipation , 2007 .

[29]  F. Hild,et al.  Determination of an HCF criterion by thermal measurements under biaxial cyclic loading , 2007 .

[30]  Pierre Charrier,et al.  Fast evaluation of the fatigue lifetime of rubber-like materials based on a heat build-up protocol and micro-tomography measurements , 2010 .

[31]  Minh Phong Luong,et al.  Fatigue limit evaluation of metals using an infrared thermographic technique , 1998 .

[32]  A. Constantinescu,et al.  Dissipative aspects in high cycle fatigue , 2009 .

[33]  Rémi Munier Etude de la fatigue des aciers laminés à partir de l'auto-échauffement sous sollicitation cyclique : essais, observations, modélisation et influence d'une pré-déformation plastique , 2012 .