Clustering and visualizing actions of humans and animals using motion features

We propose a technique to cluster actions of humans and animals. We use domain specific motion features and employ spectral clustering on them to cluster activities. For humans, we use existing optical flow features. For animals, we cluster behaviors of a grasshopper. We track it in 3D and construct features using 3D object movement which discriminate between different classes of actions. We employ spectral clustering on the extracted features for each domain. Due to the large amount of data we use the Nystrom extension which samples from the data and computes the eigenvalues and eigenvectors of affinities between them and extends it to the eigenvectors of the full affinity matrix. We use the K-means algorithm to do the final clustering. We experimented with our method on the KTH data set and videos of one grasshopper. We create a summary visualization of our results using an extension of an existing framework. To my husband and my parents "There are two ways to live: you can live as if nothing is a miracle; you can live as if everything is a miracle. "

[1]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[2]  Frank Dellaert,et al.  MCMC-based particle filtering for tracking a variable number of interacting targets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[4]  E. Rückert Detecting Pedestrians by Learning Shapelet Features , 2007 .

[5]  Marina Meila,et al.  A Comparison of Spectral Clustering Algorithms , 2003 .

[6]  Yang Wang,et al.  Unsupervised Discovery of Action Classes , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[8]  Vincent Lepetit,et al.  Monocular Model-Based 3D Tracking of Rigid Objects: A Survey , 2005, Found. Trends Comput. Graph. Vis..

[9]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[10]  Yael Pritch,et al.  Making a Long Video Short: Dynamic Video Synopsis , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[11]  Jianbo Shi,et al.  Detecting unusual activity in video , 2004, CVPR 2004.

[12]  Serge J. Belongie,et al.  Behavior recognition via sparse spatio-temporal features , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[13]  James F. O'Brien,et al.  Computational Studies of Human Motion , 2006 .

[14]  B. D. Lucas Generalized image matching by the method of differences , 1985 .

[15]  Ronen Basri,et al.  Actions as Space-Time Shapes , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  E. Nyström Über Die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben , 1930 .

[17]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Serge J. Belongie,et al.  Monitoring Animal Behavior in the Smart Vivarium , 2004 .

[19]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[20]  F. Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, CVPR 2004.

[21]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[22]  Greg Mori,et al.  Action Recognition of Insects Using Spectral Clustering , 2007, MVA.

[23]  Jitendra Malik,et al.  Efficient shape matching using shape contexts , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Jitendra Malik,et al.  Recognizing action at a distance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[25]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[27]  Wen Gao,et al.  Action Recognition in Broadcast Tennis Video Using Optical Flow and Support Vector Machine , 2006, ECCV Workshop on HCI.

[28]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Manuela M. Veloso,et al.  Automatically tracking and analyzing the behavior of live insect colonies , 2001, AGENTS '01.

[30]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[31]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[32]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[35]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..