Quantitative enzyme immobilization: Control of the carboxyl group density on support surface

[1]  Laxmi Ananthanarayan,et al.  Enzyme stability and stabilization—Aqueous and non-aqueous environment , 2008 .

[2]  B. K. Hodnett,et al.  Influence of pH and ionic strength on the adsorption, leaching and activity of myoglobin immobilized onto ordered mesoporous silicates , 2007 .

[3]  Roger A. Sheldon,et al.  Enzyme Immobilization: The Quest for Optimum Performance , 2007 .

[4]  J. Rodríguez-Hernández,et al.  Structured assemblies of ferromagnetic particles through covalent immobilization on functionalized polymer surfaces obtained by surface segregation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[5]  Roberto Fernandez-Lafuente,et al.  Improvement of enzyme activity, stability and selectivity via immobilization techniques , 2007 .

[6]  Hongjuan Ma,et al.  Conjugation of enzyme on superparamagnetic nanogels covered with carboxyl groups. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[7]  H. Ni,et al.  Effect of chemical groups of polystyrene membrane surface on its pervaporation performance , 2006 .

[8]  C. Ortiz,et al.  Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. , 2006, Biomacromolecules.

[9]  Zhi‐Kang Xu,et al.  Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. , 2006, Biomaterials.

[10]  R. Fernández-Lafuente,et al.  Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins , 2006 .

[11]  Abdul Hameed,et al.  Industrial applications of microbial lipases , 2006 .

[12]  V. Gotor‐Fernández,et al.  Lipases: Useful biocatalysts for the preparation of pharmaceuticals , 2006 .

[13]  Zhi‐Kang Xu,et al.  Entrusting poly(acrylonitrile-co-maleic acid) ultrafiltration hollow fiber membranes with biomimetic surfaces for lipase immobilization , 2006 .

[14]  Zhi‐Kang Xu,et al.  Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. , 2005, Biomaterials.

[15]  Zhi‐Kang Xu,et al.  Adsorption and activity of Candida rugosa lipase on polypropylene hollow fiber membrane modified with phospholipid analogous polymers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  J. Conboy,et al.  Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy. , 2004, Journal of the American Chemical Society.

[17]  V. Rotello,et al.  Highly Efficient Biocatalysts via Covalent Immobilization of Candida rugosa Lipase on Ethylene Glycol‐Modified Gold–Silica Nanocomposites , 2004 .

[18]  Wen-Teng Wu,et al.  Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. , 2004, Biomaterials.

[19]  A. Takahara,et al.  Surface segregation of chain ends in α,ω-fluoroalkyl-terminated polystyrenes films , 2003 .

[20]  Abraham Ulman,et al.  Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. , 2003, Journal of the American Chemical Society.

[21]  D. Klee,et al.  High density binding of proteins and peptides to poly(D,L-lactide) grafted with polyacrylic acid. , 2002, Biomaterials.

[22]  Ping Wang,et al.  Enzyme‐Carrying Polymeric Nanofibers Prepared via Electrospinning for Use as Unique Biocatalysts , 2002, Biotechnology progress.

[23]  Manfred T. Reetz,et al.  Directed Evolution of an Enantioselective Enzyme through Combinatorial Multiple-Cassette Mutagenesis. , 2001, Angewandte Chemie.

[24]  A. Kiener,et al.  Industrial biocatalysis today and tomorrow , 2001, Nature.

[25]  G. Somorjai,et al.  Detection of Hydrophobic End Groups on Polymer Surfaces by Sum-Frequency Generation Vibrational Spectroscopy , 2000 .

[26]  Isao Karube,et al.  Enzyme sensors for environmental analysis , 2000 .

[27]  Ephraim Katchalski-Katzir,et al.  Eupergit® C, a carrier for immobilization of enzymes of industrial potential , 2000 .

[28]  J. Tramper,et al.  Immobilization of penicillin G acylase onto chemically grafted nylon particles , 2000 .

[29]  A. Ballesteros,et al.  LIPASE-SILICONE BIOCOMPOSITES : EFFICIENT AND VERSATILE IMMOBILIZED BIOCATALYSTS , 1999 .

[30]  R. Fernández-Lafuente,et al.  Stabilization of multimeric enzymes via immobilization and post-immobilization techniques , 1999 .

[31]  K. Tan,et al.  Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymerized with acrylic acid. , 1998, Biomaterials.

[32]  T. Miyata,et al.  Ethanol Permselectivity of Poly(dimethylsiloxane) Membranes Controlled by Simple Surface Modifications Using Polymer Additives , 1997 .

[33]  M. Reetz Entrapment of biocatalysts in hydrophobic sol‐gel materials for use in organic chemistry , 1997 .

[34]  Keiji Fujimoto,et al.  Enzyme immobilization on thermosensitive hydrogel microspheres , 1995 .

[35]  J. Schrag,et al.  Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. , 1995, Biochemistry.

[36]  J. Koberstein,et al.  Surface depletion of end groups in amine-terminated poly(dimethylsiloxane) , 1994 .

[37]  K. Tingey,et al.  Probing surface microheterogeneity of poly(ether urethanes) in an aqueous environement , 1991 .

[38]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.