Nonlinear Local Stabilization of a Viscous Hamilton-Jacobi PDE

We consider the boundary stabilization problem of the non-uniform equilibrium profiles of a viscous Hamilton-Jacobi (HJ) Partial Differential Equation (PDE) with parabolic concave Hamiltonian. We design a nonlinear full-state feedback control law, assuming Neumann actuation, which achieves an arbitrary rate of convergence to the equilibrium. Our design is based on a feedback linearizing transformation which is locally invertible. We prove local exponential stability of the closed-loop system in the H1 norm, by constructing a Lyapunov functional, and provide an estimate of the region of attraction. We design an observer-based output-feedback control law, by constructing a nonlinear observer, using only boundary measurements. We illustrate the results on a benchmark example computed numerically.

[1]  Alexandre M. Bayen,et al.  Lax–Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton–Jacobi Equation. Part I: Theory , 2010, IEEE Transactions on Automatic Control.

[2]  Miroslav Krstic,et al.  Control of 1-D parabolic PDEs with Volterra nonlinearities, Part I: Design , 2008, Autom..

[3]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[4]  Qingkai Kong,et al.  Eigenvalues of Regular Sturm-Liouville Problems , 1996 .

[5]  M. Krstić,et al.  On global stabilization of Burgers' equation by boundary control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[6]  Daniel B. Work,et al.  Phase transition model of non-stationary traffic flow: Definition, properties and solution method , 2013 .

[7]  Miroslav Krstic,et al.  Control of 1D parabolic PDEs with Volterra nonlinearities, Part II: Analysis , 2008, Autom..

[8]  Jean-Pierre Aubin,et al.  Dirichlet problems for some Hamilton-Jacobi equations with inequality constraints , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[9]  Miroslav Krstic,et al.  Nonlinear Stabilization of Shock-Like Unstable Equilibria in the Viscous Burgers PDE , 2008, IEEE Transactions on Automatic Control.

[10]  Christophe Prieur,et al.  Lyapunov-based distributed control of the safety-factor profile in a tokamak plasma , 2013 .

[11]  Alexandre M. Bayen,et al.  Lax–Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods , 2010, IEEE Transactions on Automatic Control.

[12]  Christian G. Claudel,et al.  Efficient robust control of first order scalar conservation laws using semi-analytical solutions , 2014 .

[13]  Miroslav Krstic,et al.  Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations , 2004, IEEE Transactions on Automatic Control.

[14]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[15]  M. Krstić,et al.  Backstepping observers for a class of parabolic PDEs , 2005, Syst. Control. Lett..

[16]  Miroslav Krstic,et al.  A Closed-Form Feedback Controller for Stabilization of the Linearized 2-D Navier–Stokes Poiseuille System , 2007, IEEE Transactions on Automatic Control.

[17]  Michael Zeitz,et al.  Feedforward and Feedback Tracking Control of Nonlinear Diffusion-Convection-Reaction Systems Using Summability Methods , 2005 .

[18]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[19]  E. Hopf,et al.  The Partial Differential Equation u_i + uu_x = μu_t , 1950 .

[20]  B D Greenshields,et al.  A study of traffic capacity , 1935 .

[21]  Alexandre M. Bayen,et al.  Convex Formulations of Data Assimilation Problems for a Class of Hamilton-Jacobi Equations , 2011, SIAM J. Control. Optim..

[22]  C. Byrnes,et al.  On the Global Dynamics of a Controlled Viscous Burgers' Equation , 1998 .

[23]  Miroslav Krstic,et al.  Stabilization of a solid propellant rocket instability by state feedback , 2003 .

[24]  F. Mazenc,et al.  Strict Lyapunov functions for semilinear parabolic partial differential equations , 2011 .

[25]  G. F. Newell A simplified theory of kinematic waves in highway traffic, part I: General theory , 1993 .

[26]  Peter Kuster,et al.  Nonlinear And Adaptive Control Design , 2016 .

[27]  Xavier Litrico,et al.  Boundary stabilization of the inviscid Burgers equation using a Lyapunov method , 2010, 49th IEEE Conference on Decision and Control (CDC).

[28]  M. Krstić,et al.  Burgers' equation with nonlinear boundary feedback: H1 stability, well-posedness and simulation , 2000 .

[29]  David S. Gilliam,et al.  Numerical Stationary Solutions for a Viscous Burgers' Equation , 1998 .

[30]  Miroslav Krstic,et al.  Nonlinear Control of the Viscous Burgers Equation: Trajectory Generation, Tracking, and Observer Design , 2009 .

[31]  Miroslav Krstic,et al.  Further Results on Stabilization of Shock-Like Equilibria of the Viscous Burgers PDE , 2010, IEEE Transactions on Automatic Control.

[32]  Alexandre M. Bayen,et al.  A General Phase Transition Model for Vehicular Traffic , 2011, SIAM J. Appl. Math..

[33]  J. Aubin,et al.  Computation and control of solutions to the Burgers equation using viability theory , 2005, Proceedings of the 2005, American Control Conference, 2005..

[34]  A. Kugi,et al.  An infinite‐dimensional control concept for piezoelectric structures with complex hysteresis , 2006 .

[35]  Christophe Prieur,et al.  A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients , 2013, IEEE Transactions on Automatic Control.

[36]  Alexandre M. Bayen,et al.  Solutions to Estimation Problems for Scalar Hamilton–Jacobi Equations Using Linear Programming , 2014, IEEE Transactions on Control Systems Technology.

[37]  M. Krstić,et al.  Backstepping boundary control of Burgers' equation with actuator dynamics , 2000 .

[38]  Miroslav Krstic,et al.  Explicit integral operator feedback for local stabilization of nonlinear thermal convection loop PDEs , 2006, Syst. Control. Lett..