New perspectives in transport phenomena in electrolytes

Using the Fuoss-Onsager theory we recently obtained simple expressions for the variation with concentration of the transport coefficients of electrolytes in aqueous solution. We studied self-diffusion, conductance of binary and ternary ionic mixtures, and micellar systems. We used in the formulation of the mean spherical approximation (MSA) pair correlation functions which yield explicit formulas in terms of the MSA inverse screening lenght Γ and the dynamical Debye-Falkenhagen lengths. It was found that the use of more accurate correlation functions, such as HNC, did not produce a significant improvement in the results. Associated electrolytes are also well described by a natural extension of this theory. Our simple expressions yield good agreement with the experiments for both unassociated and associated electrolytes.

[1]  H. Friedman On the limiting law for electrical conductance in ionic solutions , 1964 .

[2]  Wu,et al.  Application of a rescaled mean spherical approximation to strongly interacting ionic micellar solutions. , 1985, Physical review. A, General physics.

[3]  W. Ebeling,et al.  Generalizations of Onsagers Semiphenomenological Theory of Electrolytic Conductance , 1978 .

[4]  W. Ebeling,et al.  Mean spherical approximation-mass action law theory of equilibrium and conductance in ionic solutions , 1982 .

[5]  J. Barthel,et al.  Transport, Relaxation, and Kinetic Processes in Electrolyte Solutions , 1992 .

[6]  S. Walrand,et al.  Diffusion in concentrated micellar and hard sphere solutions , 1986 .

[7]  G. Stell,et al.  Multidensity integral equation theory for highly asymmetric electrolyte solutions , 1995 .

[8]  H. Friedman,et al.  Charged square-well model for ionic solutions , 1968 .

[9]  J. Barthel,et al.  Transport coefficients and apparent charges of concentrated electrolyte solutions – Equations for practical use , 1994 .

[10]  P. Turq,et al.  Electrophoretic mobility in polyelectrolyte solutions , 1991 .

[11]  W. Kunz,et al.  Self-diffusion in electrolyte solutions using the mean spherical approximation , 1992 .

[12]  A. Viallard,et al.  Conductibilité électrique des mélanges d'électrolytes. Méthode mathématique générale de résolution de l'équation de continuité et de mouvement. Expression de la perturbation du champ , 1972 .

[13]  C. Micheletti,et al.  Ionic transport in unsymmetrical electrolytes , 1977 .

[14]  P. Stilbs,et al.  Micelle formation of anionic and cationic surfactants from Fourier transform proton and lithium-7 nuclear magnetic resonance and tracer self-diffusion studies , 1984 .

[15]  Lars Onsager,et al.  Irreversible Processes in Electrolytes. Diffusion, Conductance and Viscous Flow in Arbitrary Mixtures of Strong Electrolytes , 1931 .

[16]  P. Turq,et al.  Acoustophoresis Revisited. 1. Electrolyte Solutions , 1995 .

[17]  M. Bellissent-Funel,et al.  Dynamics and spatial correlations of tetrapentylammonium ions in acetonitrile , 1991 .

[18]  W. Kunz,et al.  Conductance in Associated Electrolytes Using the Mean Spherical Approximation , 1995 .

[19]  Barry W. Ninham,et al.  Ion binding and the hydrophobic effect , 1983 .

[20]  A. Ubbelohde,et al.  Electrical conductance of some paraffin-chain salts in propanol—water and propionic acid—water mixtures , 1953 .

[21]  L. Onsager On the theory of electrolytes. II , 1927 .

[22]  J. Lebowitz,et al.  Mean Spherical Model Integral Equation for Charged Hard Spheres I. Method of Solution , 1972 .

[23]  J. L. Anderson,et al.  Application of irreversible thermodynamics to isotopic diffusion. Part 1.—Isotope–isotope coupling coefficients for ions and water in concentrated aqueous solutions of alkali metal chlorides at 298.16 K , 1975 .

[24]  Olivier Bernard,et al.  Conductance in electrolyte solutions using the mean spherical approximation , 1992 .

[25]  H. Schönert,et al.  Ionic Mobilities in the Ternary Solution H2O + KCl + NaCl at 25°C , 1983 .

[26]  L. Blum,et al.  Explicit approximation for the unrestricted mean spherical approximation for ionic solutions , 1989 .

[27]  P. Debye,et al.  A Method for the Determination of the Mass of Electrolytic Ions , 1933 .

[28]  John B. Hayter,et al.  A rescaled MSA structure factor for dilute charged colloidal dispersions , 1982 .

[29]  L. Blum,et al.  Mean spherical model for asymmetric electrolytes , 1975 .

[30]  P. Turq Higher terms in the concentration dependence of self-diffusion coefficients in electrolytes , 1972 .

[31]  Jerome K. Percus,et al.  Analysis of Classical Statistical Mechanics by Means of Collective Coordinates , 1958 .

[32]  L. Blum,et al.  Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function , 1977 .

[33]  D. Evelyne Thèse de doctorat d'Etat , 1988 .

[34]  L. Onsager,et al.  THEORIES AND PROBLEMS OF LIQUID DIFFUSION , 1945, Annals of the New York Academy of Sciences.

[35]  W. Ebeling,et al.  Conductance theory of concentrated electrolytes in an MSA-type approximation , 1981 .

[36]  C. Rosenblum,et al.  Conductances of Solutions of Several Alkyl Sulfates and Sulfosuccinates. , 1942 .

[37]  J. Hayter,et al.  Self-consistent structural and dynamic study of concentrated micelle solutions , 1981 .

[38]  Lars Onsager,et al.  The Relaxation Effects in Mixed Strong Electrolytes , 1957 .