161 Dy Time-Domain Synchrotron Mössbauer Spectroscopy for Investigating Single-Molecule Magnets Incorporating Dy Ions.

Time-domain synchrotron Mössbauer spectroscopy (SMS) based on the Mössbauer effect of 161 Dy has been used to investigate the magnetic properties of a DyIII -based single-molecule magnet (SMM). The magnetic hyperfine field of [Dy(Cy3 PO)2 (H2 O)5 ]Br3 ⋅2 (Cy3 PO)⋅2 H2 O⋅2 EtOH is with B0 =582.3(5) T significantly larger than that of the free-ion DyIII with a 6 H15/2 ground state. This difference is attributed to the influence of the coordinating ligands on the Fermi contact interaction between the s and 4f electrons of the DyIII ion. This study demonstrates that 161 Dy SMS is an effective local probe of the influence of the coordinating ligands on the magnetic structure of Dy-containing compounds.

[1]  Fu-Sheng Guo,et al.  Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet , 2018, Science.

[2]  M. Tong,et al.  Single Ion Magnets from 3d to 5f: Developments and Strategies. , 2018, Chemistry.

[3]  M. Tong,et al.  Symmetry strategies for high performance lanthanide-based single-molecule magnets. , 2018, Chemical Society reviews.

[4]  M. Mannini,et al.  Mössbauer spectroscopy of a monolayer of single molecule magnets , 2018, Nature Communications.

[5]  Fu-Sheng Guo,et al.  A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. , 2017, Angewandte Chemie.

[6]  David P. Mills,et al.  Molecular magnetic hysteresis at 60 kelvin in dysprosocenium , 2017, Nature.

[7]  A. Lunghi,et al.  Intra-molecular origin of the spin-phonon coupling in slow-relaxing molecular magnets , 2017, Chemical science.

[8]  Bernd Büchner,et al.  Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene , 2017, Nature Communications.

[9]  J. Cadogan,et al.  Magnetic ground state of Dy 3+ in DyNiAl 4 , 2017 .

[10]  W. Wernsdorfer,et al.  Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal DyIII Single-Ion Magnet. , 2017, Chemistry.

[11]  S. Sanvito,et al.  The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets , 2017, Nature Communications.

[12]  J. Cadogan,et al.  Magnetic structure of DyN: A Dy 161 Mössbauer study , 2017 .

[13]  D. Heermann,et al.  A Three-Pronged Attack To Investigate the Electronic Structure of a Family of Ferromagnetic Fe4Ln2 Cyclic Coordination Clusters: A Combined Magnetic Susceptibility, High-Field/High-Frequency Electron Paramagnetic Resonance, and 57Fe Mössbauer Study. , 2017, Inorganic chemistry.

[14]  A. Powell,et al.  Multiple superhyperfine fields in a {DyFe2Dy} coordination cluster revealed using bulk susceptibility and (57)Fe Mössbauer studies. , 2016, Physical chemistry chemical physics : PCCP.

[15]  W. Wernsdorfer,et al.  A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. , 2016, Journal of the American Chemical Society.

[16]  G. Rajaraman,et al.  An air-stable Dy(iii) single-ion magnet with high anisotropy barrier and blocking temperature , 2016, Chemical science.

[17]  A. Powell,et al.  Multitechnique investigation of Dy3 – implications for coupled lanthanide clusters† †Electronic supplementary information (ESI) available: Computational details and extended results. Further experimental results. See DOI: 10.1039/c6sc00318d , 2016, Chemical science.

[18]  Xiao‐Ming Chen,et al.  Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. , 2016, Journal of the American Chemical Society.

[19]  L. Sorace,et al.  Beyond the anisotropy barrier: slow relaxation of the magnetization in both easy-axis and easy-plane Ln(trensal) complexes. , 2014, Chemical communications.

[20]  A. Platt,et al.  Complexes of lanthanide chlorides with tricyclohexylphosphine oxide. The single crystal X-ray structures and solution properties of pentagonal bipyramidal complexes [Ln(H2O)5(Cy3PO)2]3+·Cy3PO·3Cl− Ln = Dy, Er , 2014 .

[21]  Frank Neese,et al.  Mössbauer spectroscopy as a probe of magnetization dynamics in the linear iron(I) and iron(II) complexes [Fe(C(SiMe3)3)2](1-/0.). , 2013, Inorganic chemistry.

[22]  Kevin Bernot,et al.  Magnetic poles determinations and robustness of memory effect upon solubilization in a Dy(III)-based single ion magnet. , 2013, Journal of the American Chemical Society.

[23]  Ming-Liang Tong,et al.  Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh , 2013 .

[24]  R. Winpenny,et al.  Lanthanide single-molecule magnets. , 2013, Chemical reviews.

[25]  Shangfeng Yang,et al.  An endohedral single-molecule magnet with long relaxation times: DySc2N@C80. , 2012, Journal of the American Chemical Society.

[26]  J. Long,et al.  Exploiting single-ion anisotropy in the design of f-element single-molecule magnets , 2011 .

[27]  A. Powell,et al.  Effect of ligand substitution on the interaction between anisotropic Dy(III) ions and 57Fe nuclei in Fe2Dy2 coordination clusters. , 2011, Journal of the American Chemical Society.

[28]  W. Wernsdorfer,et al.  A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier. , 2009, Angewandte Chemie.

[29]  A. Powell,et al.  Strategies towards single molecule magnets based on lanthanide ions , 2009 .

[30]  P. Stamp,et al.  Spin-based quantum computers made by chemistry: hows and whys , 2008, 0807.1986.

[31]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[32]  O. Leupold,et al.  Relaxation in the spin ice Dy 2 Ti 2 O 7 studied using nuclear forward scattering , 2007 .

[33]  Y. Shvyd’ko,et al.  Nuclear resonant scattering of synchrotron radiation from 161Dy at 25.61 keV , 2001 .

[34]  R. Sessoli,et al.  New experimental techniques for magnetic anisotropy in molecular materials , 2001 .

[35]  O. Leupold,et al.  Nuclear inelastic scattering with 161 Dy , 2001 .

[36]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[37]  W. Sturhahn,et al.  CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data , 2000 .

[38]  U. Bürck Coherent pulse propagation through resonant media , 1999 .

[39]  S. Kikuta,et al.  Nuclear Resonant Excitation of 161Dy and 151Eu by Synchrotron Radiation , 1996 .

[40]  R. Brand,et al.  Magnetism and structure of Dy/Fe multilayers studied by 57Fe and 161Dy Mössbauer spectroscopy , 1996 .

[41]  Sturhahn,et al.  Evaluation of time-differential measurements of nuclear-resonance scattering of x rays. , 1994, Physical review. B, Condensed matter.

[42]  K. Buschow,et al.  RFe10V2 compounds studied by57Fe,161Dy,166Er and169Tm Mössbauer spectroscopy , 1988 .

[43]  H. Rechenberg,et al.  155Gd and 161Dy Mössbauer study of R1+εFe4B4 alloys (R = Gd, Dy) , 1987 .

[44]  P. Gütlich,et al.  Mössbauer Spectroscopy and Transition Metal Chemistry , 1978 .

[45]  N. N. Greenwood Mössbauer Spectroscopy , 1971 .

[46]  H. Wickman,et al.  The hyperfine structure of 161Dy in dysprosium salts , 1967 .

[47]  G. Bowden,et al.  A Mössbauer study of hyperfine interactions in dysprosium metal , 1967 .

[48]  R. E. Watson,et al.  Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions , 1962 .

[49]  D. H. Vincent,et al.  Direction of the Effective Magnetic Field at the Nucleus in Ferromagnetic Iron , 1960 .

[50]  R. Elliott,et al.  The theory of magnetic resonance experiments on salts of the rare earths , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[51]  R. Hanitsch,et al.  Concerted European action on magnets (CEAM) , 1989 .

[52]  B. Bleaney Hyperfine Interactions in Rare‐Earth Metals , 1963 .