LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization
暂无分享,去创建一个
[1] Nikolaus Hansen,et al. Adaptive Encoding: How to Render Search Coordinate System Invariant , 2008, PPSN.
[2] Michèle Sebag,et al. Maximum Likelihood-Based Online Adaptation of Hyper-Parameters in CMA-ES , 2014, PPSN.
[3] Anne Auger,et al. Mirrored Sampling and Sequential Selection for Evolution Strategies , 2010, PPSN.
[4] Anne Auger,et al. Comparison-based natural gradient optimization in high dimension , 2014, GECCO.
[5] James N. Knight,et al. Reducing the space-time complexity of the CMA-ES , 2007, GECCO '07.
[6] Petros Koumoutsakos,et al. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.
[7] Raymond Ros,et al. Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed , 2010, GECCO '10.
[8] Anne Auger,et al. Principled Design of Continuous Stochastic Search: From Theory to Practice , 2014, Theory and Principled Methods for the Design of Metaheuristics.
[9] P. Wolfe. Convergence Conditions for Ascent Methods. II , 1969 .
[10] HerreraFrancisco,et al. A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour , 2009 .
[11] Christian Igel,et al. Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.
[12] Dirk V. Arnold,et al. Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[13] Anne Auger,et al. Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains , 2013, SIAM J. Optim..
[14] Dirk V. Arnold,et al. On the Behaviour of the (1, λ)-ES for Conically Constrained Linear Problems , 2014, Evolutionary Computation.
[15] Michèle Sebag,et al. Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy , 2012, GECCO '12.
[16] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[17] M. Brand,et al. Fast low-rank modifications of the thin singular value decomposition , 2006 .
[18] Xin Yao,et al. Fast Evolution Strategies , 1997, Evolutionary Programming.
[19] Anne Auger,et al. Evolution Strategies , 2018, Handbook of Computational Intelligence.
[20] Michèle Sebag,et al. Bi-population CMA-ES agorithms with surrogate models and line searches , 2013, GECCO.
[21] Ilya Loshchilov,et al. A computationally efficient limited memory CMA-ES for large scale optimization , 2014, GECCO.
[22] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[23] Ilya Loshchilov,et al. CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.
[24] Siam Rfview,et al. CONVERGENCE CONDITIONS FOR ASCENT METHODS , 2016 .
[25] Alex A. Freitas,et al. Evolutionary Computation , 2002 .
[26] Tom Schaul,et al. Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[27] Tobias Glasmachers. Convergence of the IGO-Flow of Isotropic Gaussian Distributions on Convex Quadratic Problems , 2012, PPSN.
[28] Mohamed-Jalal Fadili,et al. A quasi-Newton proximal splitting method , 2012, NIPS.
[29] Petros Koumoutsakos,et al. Local Meta-models for Optimization Using Evolution Strategies , 2006, PPSN.
[30] Nikolaus Hansen,et al. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[31] Petros Koumoutsakos,et al. A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.
[32] Francisco Herrera,et al. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.
[33] Ilya Loshchilov,et al. Surrogate-Assisted Evolutionary Algorithms , 2013 .
[34] Michèle Sebag,et al. Adaptive coordinate descent , 2011, GECCO '11.
[35] K. Steiglitz,et al. Adaptive step size random search , 1968 .
[36] Charles Audet,et al. Convergence of Mesh Adaptive Direct Search to Second-Order Stationary Points , 2006, SIAM J. Optim..
[37] Anne Auger,et al. BBOB 2009: Comparison Tables of All Algorithms on All Noiseless Functions , 2010 .
[38] Raymond Ros,et al. A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity , 2008, PPSN.
[39] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[40] Anne Auger,et al. A median success rule for non-elitist evolution strategies: study of feasibility , 2013, GECCO '13.
[41] Youhei Akimoto,et al. Objective improvement in information-geometric optimization , 2012, FOGA XII '13.
[42] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.
[43] C.-S. Chien,et al. Effective condition number for finite difference method , 2007 .
[44] Raymond Ros,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .
[45] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[46] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[47] Stefan Roth,et al. Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.
[48] Jorge Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[49] Quoc V. Le,et al. On optimization methods for deep learning , 2011, ICML.
[50] Anne Auger,et al. Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles , 2011, J. Mach. Learn. Res..
[51] Anne Auger,et al. Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..
[52] Hans-Georg Beyer,et al. Convergence Analysis of Evolutionary Algorithms That Are Based on the Paradigm of Information Geometry , 2014, Evolutionary Computation.
[53] Anne Auger,et al. How to Assess Step-Size Adaptation Mechanisms in Randomised Search , 2014, PPSN.
[54] Tom Schaul,et al. A linear time natural evolution strategy for non-separable functions , 2011, GECCO.
[55] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..