A new cubic nonconforming finite element on rectangles

A new nonconforming rectangle element with cubic convergence for the energy norm is introduced. The degrees of freedom (DOFs) are defined by the twelve values at the three Gauss points on each of the four edges. Due to the existence of one linear relation among the above DOFs, it turns out the DOFs are eleven. The nonconforming element consists of P2 � Span{x 3 y xy 3 }. We count the corresponding dimension for Dirichlet and Neumann boundary value problems of second-order elliptic problems. We also present the optimal error estimates in both broken energy and L2() norms. Finally, numerical examples match our theoretical results very well.

[1]  Son-Young Yi Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions , 2005 .

[2]  D. Arnold,et al.  NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .

[3]  Zhimin Zhang,et al.  Analysis of Some Quadrilateral Nonconforming Elements for Incompressible Elasticity , 1997 .

[4]  Bruce M. Irons,et al.  EXPERIENCE WITH THE PATCH TEST FOR CONVERGENCE OF FINITE ELEMENTS , 1972 .

[5]  I. Babuska,et al.  On locking and robustness in the finite element method , 1992 .

[6]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[7]  Dongwoo Sheen,et al.  A piecewise P2-nonconforming quadrilateral finite element , 2013 .

[8]  Jun Hu,et al.  Lower Order Rectangular Nonconforming Mixed Finite Elements for Plane Elasticity , 2007, SIAM J. Numer. Anal..

[9]  Dongwoo Sheen,et al.  A Locking-Free Nonconforming Finite Element Method for Planar Linear Elasticity , 2003, Adv. Comput. Math..

[10]  Bo Li,et al.  Nonconforming finite element approximation of crystalline microstructure , 1998, Math. Comput..

[11]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[12]  R. S. Falk Nonconforming finite element methods for the equations of linear elasticity , 1991 .

[13]  Dongwoo Sheen,et al.  Nonconforming quadrilateral finite elements:¶a correction , 2000 .

[14]  M. Fortin,et al.  A non‐conforming piecewise quadratic finite element on triangles , 1983 .

[15]  Zhong-Ci Shi,et al.  NONCONFORMING ROTATED ${\mathcal Q}_1$ ELEMENT FOR REISSNER–MINDLIN PLATE , 2001 .

[16]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[17]  Gerard Awanou A rotated nonconforming rectangular mixed element for elasticity , 2009 .

[18]  Bo Li,et al.  Analysis of a class of nonconforming finite elements for crystalline microstructures , 1996, Math. Comput..

[19]  J. Douglas,et al.  A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations , 1999 .

[20]  M. Fortin A three-dimensional quadratic nonconforming element , 1985 .

[21]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[22]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[23]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[24]  Dongwoo Sheen,et al.  A new quadratic nonconforming finite element on rectangles , 2006 .

[25]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[26]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[27]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[28]  A MIXED NONCONFORMING FINITE ELEMENT FOR THE ELASTICITY AND STOKES PROBLEMS , 1999 .